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ABSTRACT

Co-prime sensor arrays (CSAs) interleave two uniform linear subar-
rays that are undersampled by co-prime factors. The resulting non-
uniform array requires far fewer sensors to match the spatial resolu-
tion of a fully populated ULA of the same aperture. Choosing the
co-prime undersampling factors as close to equal as possible min-
imizes the number of sensors in the CSA. However, the peak side
lobe of the CSA is higher than the peak side lobe of the equivalent
full uniform linear array (ULA). Increasing the number of sensors in
the CSA subarrays by half while maintaining the interelement spac-
ing gurarantees that the CSA peak side lobe is less than that of the
full aperture ULA when both arrays use rectangular windows.

Index Terms— Co-prime arrays, sampling, beamforming, uni-
form linear array

1. INTRODUCTION

The performance of a linear array in the detection and direction of
arrival estimation of a narrowband signal is highly dictated by the
physical aperture of the array and the interelement spacing between
the array elements. Improving the resolution of the array requires
increasing the array aperture while keeping the interelement spacing
less than half-wavelength to avoid spatial aliasing or grating lobes.
For a given array aperture, reducing the number of elements trans-
lates into reduced acquisition and maintenance cost, increased sys-
tem reliability and decreased system hardware complexity. Several
techniques exist in the literature to minimize the number of sensors
for a given aperture [1], [2], [3], [4], [5], [6], [7], [8], [9]. Pal and
Vaidyanathan introduced the concept of using nested ULAs that can
provide far more degrees of freedom than the number of sensors in
the array [1]. Unequally spaced, broad-band antenna arrays that re-
quire fewer elements for comparable beamwidth were discussed in
[2]. Unz found the relationship between the arbitrarily distributed
elements of linear arrays and the radiation patterns of the linear ar-
rays [3]. Ishimaru proposed a novel method to design non-uniform
arrays with desired radiation patterns in [4]. Based on [4], a method
for designing thinned non-uniform arrays with required beamwidths
was presented in [5]. Moffet introduced the minimum redundancy
linear arrays that achieve maximum resolution for a given number
of sensors by removing the redundant interelement spacings in the
arrays [6]. Steinberg compared various thinned aperiodic arrays to a
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set of random arrays in [7]. Such techniques often lead to undesir-
able non-uniform sensor locations and eccentric side lobe properties
for the array beam pattern. The co-prime sensing technique recently
proposed by Vaidyanathan and Pal [10] combines two ULAS to pro-
duce a non-uniform array requiring substantially fewer sensors than
a ULA spanning the same aperture. The uniform linear geometry of
the two constituent arrays makes CSAs easier to construct and main-
tain than many other non-uniform array design techniques. More-
over, the side lobe properties of CSAs are predictable and manage-
able.
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Fig. 1: (a) A co-prime sensor array (b) Separating a co-prime sensor array into its two
uniform linear subarrays

CSAs interleave two undersampled ULAs, referred to as the
CSA subarrays in the sequel, to produce a non-uniform linear ar-
ray. Figure 1(a) illustrates an example CSA generated by combining
a subarray with M elements and N A/2 interelement spacing (black
dots) and the other subarray with N elements and M \/2 interele-
ment spacing (red dots), with (M, N) = (4,5). Each subarray’s
sensors are indicated by different colors (black and red) with the first
sensor at 0 shared by both subarrays. Figure 1(b) illustrates the CSA
decomposed into the two uniform linear subarrays. Figure 1 and the
rest of the paper assume that N > M without loss of generality. The
spatial undersampling factors M and N must be co-prime to avoid
grating lobes in the CSA beam pattern, as discussed below.

CSAs perform conventional beamforming on each uniform sub-
array separately, then multiply the two resulting beam patterns to
obtain a total beam pattern. The resulting product beam pattern has
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Fig. 2: (a) Formation of the beam pattern of a CSA from the beam patterns of the ULAs
(b) Comparison of the beam patterns of a CSA and its equivalent full ULA

resolution equivalent to a fully sampled ULA with M N elements.
More importantly, when M and N are co-prime, the grating lobes
of the two subarrays appear in different locations. So, the resulting
product beam pattern (solid black line in Figure 2(a)) does not have
grating lobes [10]. This decrease from the M N elements of the fully
sampled ULA to the M + N — 1 elements of the CSA represents
a significant savings in system complexity, cost and computational
requirements.

The beam patterns of the two conventionally beamformed sub-
arrays using rectangular windows (or shading) are described by the
equations
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where u = cos(#) is the directional cosine and 6 is the direction of
arrival with respect to the CSA axis [8]. Figure 2(a) shows example
subarray beam patterns (blue dash-dot and magenta dash lines) for
the CSA shown in Figure 1. Both subarrays are steered to broadside
(u = cos(w/2) = 0). Figure 2(b) compares the beam patterns of
an M + N — 1 element CSA and an M N element ULA. Though
the two beam patterns achieve the same resolution, the peak side
lobe level of the CSA beam pattern is larger than the peak side lobe
level of the M N element ULA. Vaidyanathan and Pal [10] suggest
that the high side lobes of the CSA can be reduced by extending
each CSA subarray to reduce the grating lobe widths of the subar-
ray beam patterns. Reducing the grating lobe widths minimizes the
overlap between two grating lobes, reducing the overall CSA peak
side lobe level. However, Vaidyanathan and Pal do not provide any
guidelines on how many additional sensors are required. Also, they
do not suggest how to choose the co-prime factors M and N when
several choices are available.

This paper focuses on two issues that are not addressed in [10]:
How can we choose the co-prime undersampling factors M and N
for a given aperture when different options are available? How many
sensors should we add to each subarray to achieve peak side lobe
attenuation comparable to the equivalent M N element ULA?

2. CO-PRIME FACTORS

To obtain the resolution of an L element ULA with a CSA, L has to
be factored into two co-prime integers M and N. For some L, sev-
eral choices of co-prime pairs are available. For example, to obtain
the resolution of a 60 element ULA, a CSA can choose any of the fol-
lowing, (M, N) = (2,30), (M,N) = (3,20), (M,N) = (4,15)
or (M, N) = (5,12). The optimal co-prime pair (M, N) is the one
that minimizes the total number of sensors M + N since this re-
duces acquisition cost, maintenance cost, system weight and hard-
ware complexity. This is a straightforward constrained optimization
problem:

Minimize M + N

subject to MN =L 3
M >0
N>0

The optimal values of M and NN as given by Lagrange’s multiplier
optimization are M = N = /L. The co-primality requirement be-
tween M and N makes this choice invalid, but the solution implies
that the co-prime pair M and N closest to equal (v/L) are the best
choice. So, the optimal pair for L = 60 is (M, N) = (5,12). If
the resolution of a ULA with slightly fewer than L elements is ac-
ceptable, M and N with a difference of 1 can be chosen to save a
few more sensors. For example, in the previous example, (7, 8) can
be chosen instead of (5, 12) saving two more sensors (reducing the
number of sensors required by almost 12%) at a cost of less than
7% in resolution relative to the (5, 12) CSA. Figure 3 depicts the ef-
fect of choosing different co-prime factors for the integer L = 210.
(Note that 210 is the smallest integer that can be factored into co-
prime pairs in 7 ways.) The vertical axis represents the total number
of sensors required by a CSA matching the corresponding ULA per-
formance in resolution and peak side lobe level. The horizontal axis
represents the different co-prime factors for L = 210, progressing
from most to least commensurate. The plot shows that in general,
the total number of sensors in the extended CSA increases as M and
N become less equal. For the Dolph-Chebyshev and Hanning shad-
ings, the trend follows strictly. For rectangular shading, there are
some fluctuations but the general trend still holds as M and N grow
less equal.

Number of sensors in CSA for different co-prime factors
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Fig. 3: Comparison of different co-prime factors of 210

The following sections will assume that the CSA has been opti-
mized to make the total number of sensors minimum which in gen-
eral means N = M + 1.
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3. EXTENSION FACTOR OF THE CSA SUBARRAYS

In a CSA with co-prime factors M and N, the grating lobes of
the M element subarray are located at integer multiples of 2/N in
u = cos(6) and the grating lobes of the N element subarray are
located at integer multiples of 2/M in u. When N = M + 1, the
first grating lobes of the two subarrays are exactly 2/(M N) units
apart in u. The intersection of these adjacent grating lobes gives rise
to the peak side lobe of the CSA beam pattern as shown in Figure
2(a). As also shown in Figure 2(b), the peak side lobe level of the
CSA is higher than the peak side lobe of the corresponding ULA. To
make the peak side lobe level of the CSA smaller, the overlap be-
tween the two adjacent grating lobes must be be reduced. Extending
each subarray by an additional number of sensors (a) while keeping
the same interelement spacing increases the aperture of the subarrays
and the overall CSA. The increased aperture reduces both the main
lobe and grating lobe widths of the subarrays. In contrast, the loca-
tions of the grating lobes of the subarrays do not change since their
locations are determined by the interelement spacing which is not
changing. Reducing the grating lobe widths while maintaining the
separation between them reduces the overlap of the adjacent grating
lobes, and consequently the peak side lobe of the product beam pat-
tern [10]. The extended CSA will result in a beam pattern that has
higher resolution than an M N element ULA. The resolution of the
extended CSA can be compared to the resolution of a full ULA with
(N + a)M elements (assuming N > M).

There are two mechanisms by which the extended subarrays’
beam patterns combine to generate the peak side lobe of the CSA.
For the basic CSA, the peak side lobe is due to the intersection of the
two adjacent grating lobes (as noted above). As sensors are added,
there is a transition to a peak side lobe generated by the intersec-
tion of one grating lobe and one side lobe. The type of shading
determines how many additional sensors are required to trigger the
transition from one mechanism of peak side lobe generation to the
other.

For shadings like rectangular where Fourier transform of the
shading window has decreasing side lobes, the peak side lobe in
CSA can be due to the intersection of a grating lobe from one of
the subarrays and a side lobe from another subarray even for a rela-
tively small number of additional sensors. Figure 4(a) illustrates that
the overlap of a grating lobe from one subarray with the first side
lobe from the second subarray creates the peak side lobe.

For rectangular shading, the beam pattern of the M + a element
subarray with N \/2 interelement spacing is

7r(]M+a)Nu)
2
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The side lobes occur approximately at the places where the numer-
ator of the beam pattern is 1, i.e. u = £(2m + 1)/((M + a)N),
where m is an integer. Hence, the side lobe levels are approximately
given by —201log | (M +a) sin(0.5(2m+1)w /(M +a))|. When the
number of sensors is large, the peak side lobe level is approximately
—13.5dB [8]. When a is large enough such that the peak side lobe is
formed by the intersection of one grating lobe and one first side lobe,
the CSA peak side lobe equals the height of the first side lobe of a
subarray (approximately —13.5 dB) which in turn is almost equal to
the peak side lobe of the corresponding full ULA.

The number of additional sensors a that will guarantee that the
peak side lobe level of the CSA for rectangular shading is below the

Beam Pattern of CSA(M=4,N=5,a=3)
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Fig. 4: Comparison of the beam patterns of an extended CSA and a full ULA with an
equivalent resolution

peak side lobe level of the equivalent ULA can be found analytically.
The first grating lobe of the N 4 a element subarray of a CSA is at
2/M and the first grating lobe of the M + a element subarray is at
2/N. The first side lobe of the M + a element subarray appears at
3/((M + a)N) units from its grating lobe. Hence, the first side lobe
of the M + a element subarray aligns under the first grating lobe of
the NV + a element subarray when

2 3 2

NtorroNy ~ ®)

Solving the above equation for a gives us a = 0.5M for N = M +
1. Similarly, the first side lobe of the NV + a element subarray aligns
under the first grating lobe of the M + a element subarray when
a = 0.5N.
At the center of the two adjacent grating lobes (ug = 1/M +
1/N) which is approximately where the two grating lobes intersect,
sin(0.75m(2M + 1))

Buyita,n(uo) = 1.5M sin(0.5m(2M + 1)/M) ©

For M > 1, QO(IOg(BM+a7N(uO)BN+a,1\/I(UO)) < —19 dB.
Hence, when a > 0.5M, the intersection of the grating lobes is less
than the peak side lobe of one subarray, guaranteeing that the peak
CSA side lobe is generated by the alignment of a side lobe with
a grating lobe. Hence, for large a, the largest possible peak side
lobe of CSA occurs when the first side lobe of the M + a element
subarray comes exactly under the grating lobe of the /N + a element
subarray. Therefore, a sufficient condition for the peak side lobe of
CSA to be less than the peak side lobe of an equivalent full ULA
is a > [0.5M. However, this is not a necessary condition. For
certain cases, the CSA may equal the peak side lobe of the full ULA
for values of @ < M/2. Similar phenomena exist for windowed FIR
filter design, where the filter length required for a Kaiser window
may deviate slightly from the design equation guidelines [11].

For an equiripple window like Dolph-Chebysheyv, if the side
lobes are larger than the peak side lobe of a rectangular window,
the main lobe and grating lobe widths are wider than that of the
rectangular window. Therefore, the overlap of the two adjacent
grating lobes persists to larger values of a. Increasing a decreases
the peak side lobe level of the CSA, but for a certain value of a,
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the overlap of the two adjacent grating lobes will result in the peak
side lobe level that is equal to or less than the side lobe level of one
subarray. Increasing a beyond that value cannot reduce the peak
side lobe level of the CSA. The peak side lobe remains equal to the
side lobe of a subarray. However, the location of peak side lobe can
vary abruptly. Figure 5(a) shows that for (M, N) = (4,5), the peak
side lobe is still due to the intersection of two grating lobes even for
a as large as 5. But for a = 6 or more, the peak side lobe is due to
one grating lobe and one side lobe. For a = 9, the peak side lobe
location shifts substantially as the peak side lobe near v = 1 is in
fact about 0.3 dB higher than the side lobes created near the first
pair of grating lobes at w = 0.4 and 0.5 as shown in Figure 5(b).

Beam Pattern of CSA ( M = 4, N = 5), Dolph-Chebyshev Shading
0 s LTy N X3

== M+a element subarray

=== N+a element subarray

20l0g|B(u)|, dB
Y
o

== M+a element subarray
% -10j = = = N+a element subarray
= M+N+2a-1 element CSA

-20F

20l0g|B(u)|

Fig. 5: Extended CSA with Dolph-Chebyshev shading (a) (M, N, a) = (4,5, 5) (b)
(M,N,a) = (4,5,9)

For windows whose side lobes attenuate away from the main
lobe, the peak side lobe of a CSA can be made even smaller than
the corresponding full ULA with the same window. Continuing
to increase the number of sensors in the CSA further reduces the
widths of the grating lobes and side lobes, while the grating lobe lo-
cations for the subarrays remain fixed. Consequently, the peak side
lobe eventually is created by the alignment of the second side lobe
of one subarray with the grating lobe of the other subarray. This
product is less than the peak side lobe of the full ULA. The pro-
cess continues as more sensors are included, aligning the third and
subsequent side lobes of one subarray beam pattern below the grat-
ing lobe of the other array. However, for equiripple shadings like
Dolph-Chebyshev, the peak side lobe cannot be reduced beyond the
peak side lobe of one subarray because the subsequent sidelobes do
not attenuate.

4. CONCLUSION

This paper shows that the optimum co-prime factors in a CSA are
the ones as close to equal as possible for a given aperture. The paper
discusses the location and formation of the peak side lobe in an ex-
tended CSA and derives a sufficient condition on the extension factor
for the peak side lobe of the CSA to be less than that of full ULA
when the array shading is rectangular.

In the interest of brevity and simplicity, this paper focused on
peak side lobe results for the case N = M + 1 with the rectangular
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window, but the same approach can be extended to other co-prime
pairs and array shading windows.
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