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ABSTRACT

In this paper, we propose a new semi-algebraic algorithm to com-
pute the Canonical Polyadic (CP) decomposition of complex-valued
multi-way arrays. The proposed algorithm is based on the Simul-
taneous Schur Decomposition (SSD) of particular matrices derived
from the array to process. This CP algorithm solves some conver-
gence problems of classical iterative techniques and its identifiabil-
ity assumptions are less restrictive than those of other semi-algebraic
methods. We also propose a new Jacobi-like algorithm to calculate
the SSD of several complex-valued matrices. Finally the usefulness
of the proposed method is illustrated in the context of fluorescence
spectroscopy and epileptic source localization.

Index Terms— Canonical Polyadic Decomposition, CAN-
DECOMP/PARAFAC model, Simultaneous Schur Decomposition,
Jacobi-like optimization, epileptic source localization.

1. INTRODUCTION

The Canonical Polyadic or CANDECOMP/PARAFAC (CP) decom-
position consists in decomposing a Higher Order (HO) array as a
linear combination of a minimal number of rank-1 terms. The CP
decomposition can then be seen as a generalization of the Singu-
lar Value Decomposition (SVD) of two-way data to multi-way data.
But the main difference is that, under weak assumptions [1], [2], no
orthogonality constraint is needed to ensure uniqueness of the CP
decomposition. This advantage makes the CP decomposition very
useful in various applications [3], [4], [5], [6], [7], [8].

Several different methods were proposed to solve the CP prob-
lem. Generally, they can be divided into two categories: fully itera-
tive and semi-algebraic methods. The fully iterative methods, such
as the Alternative Least Squares (ALS) [9], Levenberg-Marquardt
(LM) [10], [11] and nonlinear conjugate gradient approaches [12],
try to estimate factors by starting from an initial point and itera-
tively decreasing the corresponding cost function. As the general
iterative algorithms, these algorithms suffer from converging to lo-
cal minima. To cope with this problem, different initial points must
be used, which results to a time-consuming procedure. Unlike the it-
erative algorithms, the semi-algebraic algorithms do not require any
initialization. These algorithms try to rewrite the CP problem into a
more classical matrix problem such as joint eigenvalue decomposi-
tion [13], [14], simultaneous diagonalization by congruence [15] or
Simultaneous Generalized Schur Decomposition (SGSD) [16], [17]
of several matrices. These reformulated problems are usually solved
by means of a Jacobi-like procedure.

In this paper, we propose a new semi-algebraic algorithm for
CP decomposition of complex-valued HO arrays which is based on
Simultaneous Schur Decomposition (SSD) of several matrices. Pre-
viously, a CP algorithm based on SGSD originally introduced in [18]

was proposed in [16]. This CP algorithm aims at decomposing real-
valued three-way arrays. In fact, as other algorithms proposed in
[17], it consists in reformulating the CP problem into an unsymmet-
ric simultaneous triangularization problem. To deal with the latter,
two QR decompositions are assumed and the problem is solved by
using a QZ iteration method followed by an algorithm to compute the
triangular matrices (three different methods are introduced in [17]).
Note that some constraints on the rank of the loading matrices must
be assumed for identifiability of these algorithms [16], [17]. Com-
pared with these CP algorithms, our formulation differs in such a
way that results in a symmetric simultaneous triangularization prob-
lem. In addition, the proposed CP algorithm imposes no limita-
tion on the order of the complex-valued arrays to decompose and
the identification constraints are also less restrictive. Also a new
SSD algorithm for decomposition of several complex-valued matri-
ces is proposed. Finally the usefulness of the proposed method is
illustrated in the context of fluorescence spectroscopy and epileptic
source localization.

2. METHODOLOGY

In the following sections, bold uppercase letters (e.g. A), bold low-
ercase letters (e.g. a) and calligraphic letters (e.g. A) are used to
denote matrices, vectors and HO arrays, respectively. The super-
scripts ∗,♯,

T

,
H

stand for the complex conjugate, the Moore-Penrose
pseudoinverse, the transpose and the complex conjugated transpose,
respectively.

2.1. Complex Simultaneous Schur Decomposition

In this section, we introduce a new Jacobi-like algorithm in order to
calculate the SSD of several complex-valued matrices. It is a non
trivial extension of a method proposed in the nineties for real-valued
matrices only [19].

The SSD problem can be expressed as the following simultane-
ous triangularization problem. Given R matrices Y (r)∈ Cd×d that
have the following structure:

Y (r) = Θ(o)X(r)Θ(o)H (1)
where Θ(o) ∈ Cd×d is a unitary matrix and where the R matrices
X(r) ∈ Cd×d are upper triangular matrices, our objective is the si-
multaneous triangularization of the R matrices Y (r) by finding the
appropriate unitary matrix Θ(o). In the presence of noise, the ma-
trices Y (r) do not exactly fit (1), so Θ(o) should be computed as an
approximate solution to the problem of simultaneous upper triangu-
larization. Indeed, we should find matrix Θ(o) which minimizes the
following cost function:

ψ(Θ(o)) =

R∑
r=1

∥L(Θ(o)HY (r)Θ(o))∥2F (2)
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where L(Y (r)) extracts the strictly lower triangular part of its matrix-
valued argument by replacing the upper triangular part with zeros
and where ∥.∥F denotes the Frobenius norm.

Minimizing the function ψ in several variables is a hard opti-
mization problem, except for small dimensions. The idea is to refor-
mulate this multivariate optimization problem in a finite sequence
of monovariate optimization problems using a Jacobi-like optimiza-
tion scheme. Since any unitary matrix can be written as a product
of elementary Givens rotation matrices, we can parameterize the or-
thogonal matrix Θ(o) as follows:

Θ(o) =

#ofsweeps∏
sw=1

d∏
q=1

q−1∏
p=1

Θ(o,p,q) (3)

where each elementary Givens rotation matrix Θ(o,p,q) is obtained
from an identity matrix in which we have Θ

(p,q)
p,p = c, Θ(p,q)

p,q = s,
Θ

(p,q)
q,p = −s∗ and Θ

(p,q)
q,q = c, where (c, s) ∈ R × C such that

c2 + |s|2 = 1. An appropriate parameterization of c and s in the
complex domain used in the proposed algorithm is:

s =
t√

1 + |t|2
, c =

1√
1 + |t|2

, t ∈ C (4)

In each iteration, a new elementary Givens rotation matrix
Θ(o,p,q) which defines Θ(o) (3) is computed in order to minimize
the cost function (2). So, for each p and q, the R complex-valued
matrices Y (r) are transformed as:

Y (r)′ = Θ(o,p,q)
H

Y (r)Θ(o,p,q) (5)

Since this orthogonal similarity transformation changes only the
elements of Y (r) which appear in rows and columns p and q, the
change in the cost function can be expressed as:

∆ψ(Θq,p)=(1 + |t|2)−2
(
v8+2Re{t(v∗3−v∗9)}−2Re{t2(v∗4)}

+|t|4v6+|t|2(v1+v10−2Re{v7})+2Re{t|t|2(v∗5−v∗2)}
)

+(1 + |t|2)−1
(
u1−2Re{tu2}+|t|2u3+w1+2Re{tw2}

+|t|2w3

)
−

∑R
r=1

(
|Y (r)
q,p |

2
+
∑q−1
k=p+1

(
|Y (r)
k,p |

2
+ |Y (r)

q,k |
2
))

(6)

where the coefficients v1-v10, u1-u3 and w1-w3 are defined in ap-
pendix. To calculate an appropriate complex value for t in each itera-
tion, we use the parameterization t = ρeiϕ and then we differentiate
(6) with respect to ρ and ϕ separately. Note that the roots of the
following equation system are the stationary points of ∆ψ(Θq,p).

∂∆ψ(ρ, ϕ)

∂ρ
= 0 and

∂∆ψ(ρ, ϕ)

∂ϕ
= 0 (7)

It can be shown that by merging both equations of (7) and simpli-
fying the resulting equation, the wanted ϕ value can be obtained by
rooting a single 14-th degree polynomial in variable x = ei2ϕ whose
coefficients Aℓ are given in appendix. By rooting this polynomial
numerically, fourteen complex values xk are extracted. Now, we
should choose the optimum solution x(o) among all possible xks that
minimizes the cost function (6). Since the equation (6) is a function
of t, we should first calculate the corresponding value tk for each xk
in order to choose the best solution. To this end, we do the following
computations.

By using the values xk, the corresponding values ϕ̂k can be com-
puted as follows:

ϕ̂k =
angle{xk}

2
, 1 ≤ k ≤ 14 (8)

Afterwards for each ϕ̂k, two corresponding values ρ̂(+)k and ρ̂(−)
k

are calculated by rooting the second degree polynomial ∂∆ψ(ρ,ϕ̂k)

∂ϕ̂k

in variable ρ:

ρ̂
(+/−)
k =

−Re{b1ei2ϕ̂k}±
√

(Re{b1ei2ϕ̂k})2−4Re{b0eiϕ̂k}Re{b2eiϕ̂k}
2Re{b0eiϕ̂k}

(9)
where b0, b1 and b2 are given in appendix.

So, for each xk, two couples (ϕ̂k, ρ̂
(+)
k ) and (ϕ̂k, ρ̂

(−)
k ) are ob-

tained. Then, for each couple (ϕ̂k , ρ̂(+/−)k ), t̂(+/−)k is calculated as
follows:

t̂
(+/−)
k = ρ̂

(+/−)
k eiϕ̂k (10)

To select the optimum solution t(o), the cost function (6) is com-
puted for the twenty-eight values t̂(+/−)k and the argument of the min-
imum of (6) that makes it negative (to ensure that the cost function
(2) is reduced in each step) is chosen as follows:

t(o) = arg min
t̂
(+/−)
k

∆ψ(Θq,p) (11)

By using the selected t(o), Θ(o,p,q) is computed and the matrices
Y (r) are updated using (5).

2.2. Canonical polyadic decomposition

Let ◦ be the outer product operator [20], the CP decomposition of a
q-th order complex-valued array T of size (N1 × N2 × . . . × Nq)
is defined by the following minimal linear combination:

T =
P∑
p=1

u(1)
p ◦ u(2)

p ◦ · · · ◦ u(q)
p (12)

where for each integer i ∈ {1, ..., q} the P complex-valued vectors
u

(i)
p are the column vectors of a (Ni×P ) matrix U (i) called loading

matrix. The aim of the CP problem is to determine the q loading ma-
trices U (i) of T up to a diagonal scaling matrix and a permutation
which are the classical indeterminacies of the CP decomposition.

Generally, people prefer handle unfolding matrices of multi-way
arrays. All possible matricizations of a q-way array T can be defined
by using two parameters, a permutation function π and an integer
L ∈ {1, . . . , q}:
T (π, L)k,ℓ = Tn1,n2,...,nq (13)

k = nπ(1) +

L∑
j=2

(nπ(j)−1)N (π(1),π(2),...,π(j−1))

ℓ = nπ(L+1) +

q∑
j=L+2

(nπ(j)−1)N (π(L+1),π(L+2),...,π(j−1))

with N (a1,...,aK) = Na1Na2 ...NaK . In the proposed algorithm,
we use two different unfolding matrices, namely T (1) = T (π, L1)

and T (2) = T (π, L2), where the permutation matrix π, the
constants L1 and L2 (L1 < L2) are defined in such a way
that the smallest value of the three values N (π(1),π(2),...,π(L1)),
N (π(L1+1),π(L1+2),...,π(L2)) andN (π(L2+1),π(L2+2),...,π(q)), which
is an upper bound of P , is the largest among all possible triples
(π, L1, L2). Indeed, our purpose is to propose an algorithm able
to compute a CP decomposition with the maximal rank P . For the
sake of simplicity, we assume in the following that π is the identity
permutation.
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Fig. 1. An example of the localization process: (a) the location of two epileptic sources and the average potential distribution on the scalp,
(b) the epileptic activity in the dipole sources of part (a), (c) the extracted components by using the ELS-ALS algorithm, (d) the extracted
components by using the proposed algorithm. White crosses and white points represent the original and the estimated dipole locations
respectively.

Then, it can be easily shown that T (1)= Ũ
(L1:1)

Ũ
(q:L1+1)

T

with Ũ
(k:l)

= U (k) ⊙ U (k−1) ⊙ . . . ⊙ U (l) where ⊙ denotes the
Khatri-Rao product operator. Note that the Ũ

(q:L1+1)
matrix can

also be written as follows:

Ũ
(q:L1+1)

T

=(Ũ
(q:L2+1)

⊙ Ũ
(L2:L1+1)

)
T

=

[
Φ(1)Ũ

(L2:L1+1)T

, . . . ,Φ(N∗)Ũ
(L2:L1+1)T

]
(14)

with N∗ = N (L2+1,...,q) and where Φ(i) is a (P×P ) diagonal ma-
trix for which diagonal is equal to the elements of the i-th row of

Ũ
(q:L2+1)

. By comparing the SVD UΣV
H

of T (1) truncated at or-
der P with the previous factorized expression of T (1), we conclude
that it exists a (P×P ) non-singular matrix W such that:

V
H

= WŨ
(q:L1+1)T

(15)

Now by inserting (14) into (15), we can rewrite V
H

as follows:

V
H

=

[
WΦ(1)Ũ

(L2:L1+1)T

, . . . ,WΦ(N∗)Ũ
(L2:L1+1)T

]
(16)

Now let’s define the N∗ matrices Γ(i) of size (P×N (L1+1,...,L2))

by Γ(i) =WΦ(i)Ũ
(L2:L1+1)T

. By assuming that each matrix Γ(i)

is full row rank, all matrices Γ(i) admit a Moore-Penrose matrix
inverse Γ(i)♯. So, we define N∗2 −N∗ matrices Y (i,j) by Y (i,j) =
Γ(i)Γ(j)♯. It can be shown that Y (i,j) = WD(i,j)W−1 where, for
each couple (i, j), D(i,j) = Φ(i)Φ(j)♯ is a diagonal matrix. Thus,
let us write W = QR, namely the QR decomposition of matrix W

where QQ
H

= I and R is an upper triangular matrix. Then we can
rewrite Y (i,j) as follows:

Y (i,j) = QRD(i,j)R−1Q−1 = QX(i,j)Q
H

(17)

where the matrices X(i,j) = RD(i,j)R−1 are upper triangular ma-
trices. Since the elements on the diagonal of X(i,j) are equal to the
diagonal components of D(i,j), by applying the proposed SSD al-
gorithm to matrices Y (i,j), the upper triangularized matrices X(i,j)

and consequently the diagonal matrices D(i,j) are extracted. Now

let’s see how the components of Ũ
(q:L2+1)

can be identified from
those of the matrices D(i,j). Since D(i,j) = Φ(i)Φ(j)♯, for each
column of Ũ

(q:L2+1)
, we have R = N∗2 − N∗ equations. If we

define U∗ = Ũ
(q:L2+1)

, for column p, we have:

∀i, j, i ̸= j,
U∗
i,p

U∗
j,p

= D(i,j)
p,p ⇒ U∗

i,p −D(i,j)
p,p U∗

j,p = 0 (18)

These equations can be written in a matrix form:
M (p)u∗

p = 0R×1 (19)

where u∗
p is the p-th column of matrix U∗ and the matrix M (p) of

size ((N∗2 − N∗) × N∗) is defined as follows. For each ordered

pair {(i, j), i ̸= j, 1 ≤ i, j ≤ N∗}, we consider one row in matrix
M (p) such that the element in the i-th column is equal to 1, the ele-
ment in the j-th column is equal to −D(i,j)

p,p and the other elements
are 0. Note that the order of the rows are unimportant in the solution.
It is also noteworthy that the system (19) has an infinite number of
solutions due to the scaling indeterminacies of the CP decomposi-

tion. So we set the elements of the first row of U∗ = Ũ
(q:L2+1)

equal to one and then we extract the elements of the other rows from

(19). Now, since we have T (2) = Ũ
(L2:1)

Ũ
(q:L2+1)

T

, by assum-

ing the full column rank of Ũ
(q:L2+1)

, Ũ
(L2:1) can be calculated as

follows:

Ũ
(L2:1)

= U (L2) ⊙ . . .⊙U (1) = T (2)(π, L2)

(
Ũ

(q:L2+1)T
)♯
(20)

Next, the (NL2 × . . .×N1) rank-1 array Ũ
(L2:1)

p associated to the

p-th column u(p) of Ũ
(L2:1) is generated as follows:

Ũ (L2:1)
p,iL2

,...,i2,i1
= u

(p)

iL2
+
∑i1

i=iL2−1
((i−1)N(L2,...,i+1))

(21)

Then by computing a simple rank-1 HOSVD [21] of Ũ
(L2:1)

p , the
p-th columns of matrices U (1),. . .,U (L2) are extracted. The same

procedure can be applied to the matrix Ũ
(q:L2+1)

to extract the other
loading matrices U (j) for j ∈ {L2 + 1, ..., q}.

3. SIMULATIONS

3.1. Multiway analysis of amino acids fluorescence data

In this section, we examine the effect of overfactoring, say an over-
estimation of the array rank, on the performance of different CP
methods. To this end, we use the Amino acids fluorescence data
downloaded from [22] and described in [22], [23]. This data set
comprises five simple laboratory-made samples. Each sample is
composed of different amounts of tyrosine, tryptophan and pheny-
lalanine dissolved in phosphate buffered water. The samples were
measured by fluorescence on a PE LS50B spectrofluorometer with
excitation slit-width of 2.5 nm, an emission slit-width of 10 nm and
a scan-speed of 1500 nm/s [22]. Since each individual amino acid
gives a rank-1 contribution to the data, ideally we can describe these
data with three CP components [22]. We applied three classical CP
methods, namely ALS [9], ELS-ALS [10], LM [10] and the SSD-CP
method proposed in this paper, to canonically decompose the amino
acids fluorescence data. Then we compared the emission-mode fac-
tors estimated by the four methods by varying the rank P of the CP
decomposition from 3 to 5 as shown in Fig.2. Note that, regard-
ing the three fully iterative methods, they are run several times with
different random initial guess in order to use the best initialization.
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Fig. 2. The emission mode factors with the estimated number of
components equal to (a) P = 3, (b) P = 4 and (c) P = 5

As displayed in Fig.2(a), for P = 3, all CP algorithms generate al-
most the same emission factors corresponding to three amino acids.
As shown in Fig.2(b-c), in the case of P = 4 and P = 5, the fac-
tors obtained from the three iterative algorithms change, however the
SSD-CP proposed technique generates three factors that match with
the true factors while the forth and the fifth estimated factors are
very small. These results show that SSD-CP is robust with respect
to overfactoring.

3.2. Localization of Epileptic Sources

In this section, the efficiency of the proposed algorithm in extract-
ing loading matrices of complex-valued arrays is studied in the con-
text of the localization of epileptic electroencephalographic sources.
A 3-shell spherical head model, two superficial, radically oriented
dipole sources (with random positions) and the Jansen model [24]
are considered to construct 64 channels of epileptic data [7]. Then,
the STFT of these data is used to construct the HO array T ∈
CN1×N2×N3 where the three dimensions represent time, frequency
and channel respectively. By using the CP algorithms, the location of
the dipoles is estimated by extracting the corresponding factors. The
efficiency of the proposed algorithm and the ELS-ALS algorithm
to estimate the location of the sources is compared in 100 monte-
carlo trials. In each trial, we calculate the Root Mean square Error
(RMSE) [7] between the estimated and the original locations of the
sources. Fig.1 (a) shows the location of two epileptic sources and the
average potential distribution on the scalp while Fig.1 (b) displays
the epileptic activity of these dipole sources. Fig.1 (c) and (d) show
the original and the estimated locations of the sources by using the
ELS-ALS algorithm [20] and the proposed algorithm, respectively.
In this figure, white crosses and white points represent the original
and the estimated dipole locations, respectively. The average local-
ization errors of the proposed algorithm and the ELS-ALS algorithm
are 2.53 and 2.78 cm, respectively.

4. CONCLUSION

In this paper, a new semi-algebraic SSD-based algorithm to com-
pute the CP decomposition of multi-way complex-valued arrays was
proposed. We also proposed a new Jacobi-like algorithm to calcu-
late SSD of several complex-valued matrices. We compared the effi-
ciency of the proposed algorithm with the ELS-ALS algorithm in the

context of source localization. We show that the localization error of
the proposed algorithm is lower than that of the ELS-ALS algorithm
and conclude that our algorithm can be used in the source localiza-
tion context. We also show that the proposed method is robust with
respect to the overestimation of the number of factors.

5. APPENDIX

To calculate the values of coefficients Aℓ, first we define the values
v1 to v10, u1 to u3 andw1 tow3 as functions of elements of matrices
Y (r), 1 ≤ r ≤ R as follows:

v1=

R∑
r=1

|Y (r)
p,p |

2
, v2=

R∑
r=1

Y (r)
p,p Y

(r)
p,q

∗
, v3=

R∑
r=1

Y (r)
p,p Y

(r)
q,p

∗

v4=

R∑
r=1

Y (r)
p,p Y

(r)
q,q

∗
, v5=

R∑
r=1

Y (r)
p,q Y

(r)
q,q

∗
, v6=

R∑
r=1

|Y (r)
p,q |

2

v7=
R∑
r=1

Y (r)
p,q Y

(r)
q,p

∗
, v8=

R∑
r=1

|Y (r)
q,p |

2
, v9=

R∑
r=1

Y (r)
q,p Y

(r)
q,q

∗

v10=

R∑
r=1

|Y (r)
q,q |

2
, u1=

R∑
r=1

q−1∑
k=p+1

|Y (r)
kp |

2
, w1=

R∑
r=1

q−1∑
k=p+1

|Y (r)
qk |

2

u2=
R∑
r=1

q−1∑
k=p+1

Y
(r)
kp Y

(r)
kq

∗
, w2=

R∑
r=1

q−1∑
k=p+1

Y
(r)
qk Y

(r)
pk

∗

u3=

R∑
r=1

q−1∑
k=p+1

|Y (r)
kq |

2
, w3=

R∑
r=1

q−1∑
k=p+1

|Y (r)
pk |

2
(22)

Then we define b0–b4, c0–c4, t0–t7 and s0–s5 as follows:
b0 = j(v∗5−v2−u2+w2), b1=−j2v∗7 , b2=j(v∗3−v9−v2+w2)

b3 =−2v1+4v6+4Re{v4}−2v10+2u3−2u1+2w3−2w1

b4 = 2v1−4Re{v4}−4v8+2v10+2u3−2u1+2w3−2w1 (23)
c0 = c∗4 = b21, c1 = c∗3 = −4b∗2b

∗
0, c2 = 2|b1|2−8Re{b2b∗0} (24)

t0= t∗7= 2jb∗2b
∗
1
2
b∗0

2−2jb0b
∗
1
4−2jb∗1

2
b∗0

3
+b3b

∗
1
3
b∗0 (25)

t1 = t∗6= −4jb∗2
2
b∗0

3
+4jb∗2b

∗
0
4−4jb2b

∗
1
2
b∗0

2
+b0b3b

∗
1
3

+2jb1b
∗
1
3
b∗0+b4b

∗
1b

∗
0
3
+12jb0b

∗
2b

∗
1
2
b∗0− 3b3b

∗
2b

∗
1b

∗
0
2

t2= t∗5= 10jb20b
∗
2b

∗
1
2−16jb0b

∗
2
2
b∗0

2
+6jb20b

∗
1
2
b∗0 − 6jb1b0b

∗
1
3

+8jb2b
∗
0
4
+4jb2b

∗
2b

∗
0
3
+4jb0b

∗
2b

∗
0
3−6jb1b

∗
1b

∗
0
3
+3b1b3b

∗
1
2
b∗0

−2jb1b
∗
2b

∗
1b

∗
0
2−3b2b3b

∗
1b

∗
0
2
+3b0b4b

∗
1b

∗
0
2 −6b0b3b

∗
2b

∗
1b

∗
0

t3 = t∗4= 8jb22b
∗
0
3
+4jb30b

∗
1
2−12jb20b

∗
2b

∗
0
2−20jb20b

∗
2
2
b∗0

+6jb21b
∗
1
2
b∗0+20jb2b0b

∗
0
3
+b1b4b

∗
0
3
+4jb2b

2
0b

∗
1
2− 3b20b3b

∗
2b

∗
1

+3b1b0b3b
∗
1
2
+4jb2b0b

∗
2b

∗
0
2−14jb2b1b

∗
1b

∗
0
2 −6b2b0b3b

∗
1b

∗
0

−6jb1b0b
∗
1b

∗
0
2−3b1b3b

∗
2b

∗
0
2
+3b20b4b

∗
1b

∗
0 +12jb1b0b

∗
2b

∗
1b

∗
0

s0=s
∗
5 = −2jb0b∗1

3−2jb∗1b
∗
0
3
+b3b

∗
1
2
b∗0+2jb∗2b

∗
1b

∗
0
2 (26)

s1=s
∗
4 = b4b

∗
0
3
+b0b3b

∗
1
2−4jb2b

∗
1b

∗
0
2
+2jb1b

∗
1
2
b∗0

−b3b∗2b∗0
2
+8jb0b

∗
2b

∗
1b

∗
0

s2=s
∗
3 = −4jb1b

∗
0
3−4jb1b0b

∗
1
2−b2b3b∗0

2
+3b0b4b

∗
0
2− 2b0b3b

∗
2b

∗
0

+6jb20b
∗
2b

∗
1+6jb20b

∗
1b

∗
0−4jb2b0b

∗
1b

∗
0+2b1b3b

∗
1b

∗
0

Finally, we can calculate the fifteen coefficients Aℓ according to the
predefined parameters:

Aℓ=

min (7,ℓ)∑
k=max (0,ℓ−7)

tktℓ−k −
min (5,ℓ)∑

i=max (0,ℓ−9)

min (5,ℓ−i)∑
j=max (0,ℓ−9,ℓ−i−4)

sisjcℓ−i−j
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