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ABSTRACT

This paper considers the development of fast widely-linear (FWL)
recursive Least-squares (RLS) algorithm well suited for processing
non-circular signals. The proposed algorithm makes use of covari-
ance and modified covariance matrices which take full advantage of
second order statistics of non-circular data. Further, the proposed
algorithm is based on the fast QR-decomposition recursive least-
squares (QRD-RLS) algorithm. Therefore, its computational com-
plexity is of O(N) as compared to O(N2) of conventional WL-RLS
and is numerically more stable in finite precision environment. Sim-
ulation results have been presented to test the proposed FWL-QRD-
RLS algorithm in two adaptive filtering scenarios: system identifica-
tion and uniform array beamformer.

Index Terms— QR-decomposition, Complexed-valued signal
processing, widely linear, adaptive filtering, Fast algorithms

1. INTRODUCTION

In practice, processing improper (non-circular) data is required in
a wide range of applications, such as, wind forecasting using quater-
nion data for renewable energy generation, multiple access inter-
ference mitigation in direct sequence code division multiple access
(DS-CDMA) systems, adaptive beamforming for underdetermined
scenario where the number of sources is greater than the number of
antennas [1–4]. A random signal x is proper if completely described
by its covariance matrix E{xxH}, whereas its complementary co-
variance E{xxT} is zero, otherwise it is improper. Standard adap-
tive filtering techniques have been primarily developed for proper in-
put signals, therefore, their performance degrades when processing
improper (non-circular) data [5–7]. Widely-linear (WL) adaptive fil-
tering approaches, on the other hand, are now gaining popularity due
to their superior performance over the traditional methods in the pre-
viously mentioned applications [1–3]. The interest in WL process-
ing has led to the development of new algorithms that are based on
least-mean square (LMS) and recursive least-squares (RLS) frame-
works [1, 2].

WL adaptive filters are based on the concept of exploiting the
original data and its complex conjugate to process non-circular sig-
nals. This exploitation has let to performance levels not achievable
by traditional adaptive approaches. However, this performance boost
comes at cost, which is an additional computational complexity. In
LMS type algorithms, this cost is not an issue, as it is in O(N),
N being the number of complex valued filter coefficients. For RLS
type algorithms, this is not the case as the computational cost of
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WL-RLS algorithm is 4 times the traditional algorithm. The RLS
type algorithms are often preferred over the LMS type algorithms
in processing improper signals since they have superior convergence
speed and lower misadjustment [8].

Attempts to reduce the computational complexity of WL-RLS
algorithms have been reported in the literature. In [1], a modified
WL-RLS algorithm has been proposed for the purpose of reduc-
ing the computational cost of the WL-RLS algorithm. The modified
WL-RLS algorithm makes use of a unitary transform so that real val-
ues are used instead of the complex input data values. Note that even
with this transformation, the complexity of the modified WL-RLS is
still in O(N2). Further, this algorithm suffers from the instability in
finite precision environment inherent in traditional RLS algorithms.

In this paper, we reformulate the WL adaptive processing as a
multichannel sequential fast QR-decomposition RLS (QRD-RLS)
algorithm and exploit the covariance and modified covariance ma-
trices which take full advantage of second order statistics of non-
circular data for the development of fast WL-QRD-RLS algorithm.
Fast algorithms based on QR-decomposition have been proposed in
the literature to reduce the computational burden of RLS algorithms
by an order of magnitude (i.e., O(N) instead of N2), by taking ad-
vantage of the shift structure of the input data matrix which allows
vector updates instead of matrix updates [9–11]. Further, these algo-
rithms have better performance when implemented in finite precision
which results in a lower system power consumption, which in turn,
leads to environmental and human friendly or “Green” solutions.

The rest of the paper is organized as follows. Section 2 provides
an introduction to the development of the proposed FWL-QRD-RLS
algorithm. A brief derivation of the proposed algorithm is presented
in Section 3. Section 4 presents simulation results to show the per-
formance of the proposed FWL-QRD-RLS algorithm as compared
to that of RLS and WL-RLS algorithms in two scenarios: system
identification and uniform circular array beamformer.

2. FUNDAMENTALS

This section provides basic set of equations that are essential for the
derivation of the FWL-QRD-RLS algorithm.

Consider a multichannel adaptive filtering setup with M chan-
nels and N coefficients per channel, resulting in a total of MN co-
efficients. To derive the WL algorithm both the input and its conju-
gate must be considered as shown in Fig 1 (where the dashed-lines
depict the conjugate input). Therefore, WL-QRD-RLS considers
P = 2×MN coefficients.

The WL-QRD-RLS algorithm minimizes the following objec-
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Fig. 1. Multichannel adaptive filter setup.

tive function with respect to the coefficient vector w(k) ∈ C
P×1

ξ(k) =
k∑

i=0

λk/2|d∗(i)− x
H
WL(i)w(k)|2 = ‖e∗(k)‖2 (1)

where λ is the forgetting factor, e(k) ∈ C
(k+1)×1 is the a priori

error vector given as,

e
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w(k)

= d
∗(k)−XWL(k)w(k),

(2)

for the kth time index, d(k) ∈ C
(k+1)×1 is the desired signal vector,

x(k) ∈ C
P×1 is the WL input vector

xWL(k) =
[
xT(k) xT(k − 1) . . . xT(k − P + 1)

]T
. (3)

The input vector for WL process contains both the original complex
values and their conjugate pairs augmented into single 2M×1 input
vector defined as,

x(k) =
[
x1(k) . . . xM (k) x∗

1(k) . . . x∗
M (k)

]T
. (4)

The WL-QRD-RLS algorithm uses an orthogonal rotation ma-
trix QWL(k) ∈ C

(k+1)×(k+1) to triangularize XWL(k) as
[
0(k+1−P )×P

UWL(k)

]

= QWL(k)XWL(k) (5)

where UWL(k) ∈ C
P×P is the Cholesky factor of the deterministic

autocorrelation matrix RWL(k) = XH
WL(k)XWL(k) which has a

block Toeplitz structure. Pre-multiplying (2) with QWL(k) gives

QWL(k)e
∗(k) =

[
eq1(k)
eq2(k)

]

=

[
dq1(k)
dq2(k)

]

−
[
0(k+1−P )×P

UWL(k)

]

w(k)

(6)

We emphasize that dq1(k) and dq2(k) are partitions of vector d∗(k)
after rotation, similarly eq1(k) and eq2(k) are partitions of vector
e∗(k) after rotation. The cost function in (1) is minimized by choos-
ing w(k) such that dq2(k) − UWL(k)w(k) is zero, i.e., w(k) =
U−1

WL(k)dq2(k). The algorithm updates dq2(k) and UP (k) as fol-
lows [11]

[
eq1(k)
dq2(k)

]

= Qθ(k)

[
d∗(k)

λ1/2dq2(k − 1)

]

(7)

[
01×P

UWL(k)

]

= Qθ(k)

[
xH
WL(k)

λ1/2UWL(k − 1)

]

(8)

where Qθ(k) ∈ C
(P+1)×(P+1) is a sequence of Givens rotation

matrices which annihilates the input vector x(k) in (8) and can be
partitioned as [11]

Qθ(k) =

[
γ(k) gH(k)
f(k) E(k)

]

(9)

The algorithm is complete with the definition of the a priori error
value e(k) = e∗q1(k).

3. FAST ALGORITHM

In this section, the WL-approach is incoporated in a sequential mul-
tichannel FQRD-RLS algorithm to derive the FWL-QRD-RLS algo-
rithm [9]. Only a brief sketch of derivation is presented.

We can now consider the following unitary transformation on
the input vector defined in (4),

x̂(k) =

[
I(k) jI(k)
I(k) −jI(k)

]−1

︸ ︷︷ ︸

Tu

x(k)

=
[
ℜ{x1(k) . . . xM (k)} ℑ{x1(k) . . . xM (k)}

]T

(10)

where I(k) ∈ C
M×M is the identity matrix. It was shown in [1] that

if x̂(k) is used as an input signal to a WL algorithm instead of x(k),
the resulting coefficients ŵ(k) are related to actual coefficients w(k)
by Tu.

In a sequential algorithm, the input vector defined in (3) is up-
dated in 2M steps. The first step is given by,

[
x̄(1)(k − 1) ℜ{x1(k −N)}

]T
= P1

[
ℜ{x1(k)} x̄(k − 1)

]T

(11)
where, x̄(k) is similar to x(k) in (3) except that its member vectors
are now the modified input vectors in (10). P1 is the permutation
matrix that places x1(k) in the correct position in x̄(1)(k − 1) for
the update, and removes ℜ{x1(k−N)} from x̄(k−1). ℜ{.} denotes
the real part of a complex number. Similarly, the M + 1th step is
given as,

[
x̄(M+1)(k − 1) ℑ{x1(k −N)}

]T
= PM+1

[
ℑ{x1(k)} x̄(M)(k − 1)

]T

(12)
where ℑ{.} denotes the imaginary part of a complex number. After
2M iterations, the input vector is updated from index k − 1 to k,

x̄(k − 1) → x̄
(1)(k − 1) → . . . → x̄

(2M)(k − 1) = x̄(k) (13)
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Let us define the input data matrix of the lth sequential step defined
in (13) as,

X
(l)
WL(k − 1) = Pl








x̄H(l)(k − 1)

λ1/2x̄H(l)(k − 2)
...

λk/2x̄H(l)(−1)







. (14)

Similar to (5) we can obtain the corresponding Cholesky factor,
[
0(k−P+1)×P

U
(l)
WL(k − 1)

]

= Q
(l)(k)X

(l)
WL(k − 1). (15)

The update equation for the Cholesky factor given in (8) can also be
applied to (15), which results in,

[
01×P

U
(l)
WL(k − 1)

]

= Q
(l)
θ (k)

[
x̄H(l)(k − 1)

λ1/2U
(l−1)
WL (k − 1)

]

. (16)

FWL-QRD-RLS algorithms exploit the shift structure of the in-
put vector, and replace the matrix update in (16) with vector updates
of either f(k) or g(k) in (9). Here we will adopt the algorithm based
on a posteriori errors in [9] which updates vector f(k). In FWL-
QRD-RLS algorithm, vector f(k) is updated in 2M successive steps,
i.e.,

f(k − 1) → f
(1)(k − 1) → · · · → f

(2M)(k − 1) = f(k) (17)

where
f
(l)(k − 1) = U

−H(l)(k − 1)x̄(l)(k − 1). (18)

The update equation for vector f (l−1)(k − 1) is given as




ε
(l)
b

(k)

‖e
(l)
b

(k)‖

f (l)(k − 1)



 = PlQ
(l)
fθ(k)





f (l−1)(k − 1)
ε
(l)
f

(k)

‖e
(l)
f

(k)‖



 , (19)

where ε(l)b (k) and ε
(l)
f (k) are the a posteriori backward and forward

prediction errors, ‖e(l)
b (k)‖ and ‖e(l)

f (k)‖ are the norms of the back-
ward and forward prediction error vectors, and Pl is the permutation
matrix. The resulting FWL-QRD-RLS algorithm is summarized in
Table 1. The computational complexity of the proposed algorithm is
compared to RLS and WL-RLS algorithms in Table 2.

4. SIMULATION RESULTS

This section investigates the equivalence of FWL-QRD-RLS algo-
rithm with a WL-RLS algorithms in two applications. A system
identification of an unknown complex valued linear-system when
only real valued desired signal is available. Such a situation occurs in
multiple access interference mitigation for DS-CDMA systems [4].
An adaptive beamforming for interference cancellation in a uniform
circular antenna array is also presented.

4.1. System identification

The setup consists of an unknown system the output of which is de-
fined as d(k) = ℜ{wHx(k)}+n(k), where w = [w1 w2 . . . wP ],
wp = β(1 + cos(2π(p − 3)/5) − j(1 + cos(2π(p − 3)/10), β =
0.432, p = 1, 2, . . . , P and n(k) is the Gaussian noise a vari-
ance of −20dB [1]. And the input signal vector x(k) is defined
using two uncorrelated real-valued Gaussian processes, xR(k) and
xI(k), with zero mean and 1/

√
(2) variance. That is, x(k) =

Table 1. FWL-QRD-RLS algorithm.
Multichannel sequential FQR POS B algorithm for WL complex signals
Initializations:

d
(i)
fq2

(0) = 0P×1 ; f(i)(0) = 0P×1 ; dq2(0) = 0P×1 ; γ
(0)
P

(k) = 1; ‖e
(i)
fP

(0)‖ = µ;

Q
(i)
θ

(k) = IP+1×P+1 ; Q
(i)
θf

(k) = IP+1×P+1 ; i = 1, 2, . . . ,M

for each k {

Q
(0)
θf

(k) = Q
(M)
θf

(k − 1)

f(0)(k) = f(M)(k − 1)
for each i 1 to M{

Obtaining d
(i)
fq2

(k):

e
(i)
fq1

(k) = xi(k)






e
(i)
fq1

(k)

d
(i)
fq2

(k)






= Q

(i−1)
θ

(k)

[

xi(k)

λ1/2d
(i)
fq2

(k − 1)

]

Obtaining ‖e
(i)
f

(k)‖:

‖e
(i)
f

(k)‖ =

√

(e
(i)
fq1

(k))2 + λ‖e
(i)
f

(k − 1)‖2

Obtaining Q
(i)
θf

(k):




0P×1

‖e
(i)
f0

(k)‖



 = Q
(i)
θf

(k)







d
(i)
fq2

(k)

‖e
(i)
f

(k)‖







Obtaining f(i)(k):

e
(i)
f

(k) = γ(i−1)(k)e
(i)
fq1

(k)










e
(i)
b

(k)

‖e
(i)
b

(k−1)‖

f(i)(k − 1)











= PiQ
(i)
θf

(k)











f(i−1)(k − 1)

e
(i)
f

(k)

‖e
(i)
f

(k−1)‖











Obtaining Q
(i)
θ

(k):
[

1
0P×1

]

= [Q
(i)
θ

(k)]T
[

γ(i)(k)

f(i)(k − 1)

]

}
Joint Process Estimation:
[

eq1(k)

dq2(k)

]

= Qθ(k)

[

d(k)

λ1/2dq2(k − 1)

]

e(k) = eq1(k)/γ(M)(k)

}

√
1 = α2xR(k) + jαxI(k), where α = 0.2. The forgetting factor λ

for RLS, WL-RLS and FWL-QRD-RLS algorithms is set to 0.999.
Fig. 2 shows the learning curves for the three algorithms. It is ob-
served that WL algorithms match each other while outperforming
the conventional RLS algorithm.

4.2. Uniform circular array broadband beamforming

A uniform circular array with M = 4 antenna elements with spac-
ing equal to half wavelength is used in a beamforming system in
persence of 4 interferering signals. The desired signal is at 45o,
while the interferers are at 90o, 1450o, 180o, and 270o. The signal
to interference ratio −40dB for desired signal. Fig. 3 shows the per-
formance of the WL algorithms against conventional RLS algorithm.
Whileas, Fig. 4 shows the resulting beam pattern of the array. Both
WL algorithms show same performance.

5. CONCLUSIONS

This paper has presented a new fast adaptive algorithm, which is
a WL version of multichannel sequential fast QRD-RLS algorithm.
The proposed algorithm exploits the covariance and modified covari-
ance matrices which take full advantage of second order statistics of
improper (non-circular) data. The resulting algorithm has computa-
tional complexity, which is in an order of magnitude lower than that
of the WL-RLS algorithm. Simulation results show that the learning
curve of the proposed FWL-QRD-RLS algorithm exactly matches
that of the WL-RLS algorithm. That is, the proposed algorithm
maintains the same performance as that of the WL-RLS algorithm
but with lower computational cost and greatly enhanced numerical
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Table 2. Computational complexities of FWL-QRD-RLS, WL-RLS and RLS.
Algorithm + × ÷

FWL-QRD-RLS 12P + 11M + 4N − 7
∑M

i=1 pi 14P + 13M + 5N − 9
∑M

i=1 pi 3P + 5M + 3
∑M

i=1 pi
WL-RLS 6P 2 + 11P 8P 2 + 14P + 1 1

RLS 6P 2 + 14P − 1 7P 2 + 21P + 1 1
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Fig. 2. Learning curves of RLS, WL-RLS, and FWL-QRD-RLS
algorithms.

stability due to the numerical properties of the QRD based RLS al-
gorithms.
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