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ABSTRACT

We present low complexity, quickly converging robust adaptive
beamformers that combine robust Capon beamformer (RCB) meth-
ods and data-adaptive Krylov subspace dimensionality reduction
techniques. We extend a recently proposed reduced-dimension RCB
framework, which ensures proper combination of RCBs with any
form of dimensionality reduction that can be expressed using a full-
rank dimension reducing transform, providing new results useful
for data-adaptive dimensionality reduction. We consider Krylov
subspace methods computed with the Powers-of-R (PoR) and Con-
jugate Gradient (CG) techniques, illustrating how a fast CG-based
algorithm can be formed by beneficially exploiting that the CG-
algorithm yields a diagonal reduced-dimension covariance matrix.
Our simulations show the benefits of the proposed approaches.

Index Terms— Robust adaptive beamforming, dimensionality
reduction, Krylov subspace methods.

1. INTRODUCTION AND PRELIMINARIES

When implementing adaptive beamforming on arrays with large
apertures and many elements that operate in dynamic environ-
ments, reduced-dimension techniques are often needed to speed-up
the convergence of the algorithms and reduce their computational
complexity [1]. This is of fundamental importance in applications
found in passive sonar and radar systems. Furthermore, robust
adaptive techniques are often required to alleviate the deleterious
effects of array steering vector (ASV) mismatch, e.g., caused by
calibration and pointing errors. A popular class of these are the ro-
bust Capon beamformers (RCBs) that exploit ellipsoidal, including
spherical, uncertainty sets of the ASV [2–6]. In [1, 7], a frame-
work for combining reduced-dimension and RCB techniques was
derived, allowing rapidly converging, low complexity robust adap-
tive reduced-dimension robust Capon beamformers (RDRCBs) to
be formed. A key contribution of that work was the derivation of
a complex propagation theorem that allows a reduced-dimension
ellipsoid to be derived from an element-space ellipsoid and any
full-rank dimension reducing transform. The reduced-dimension
ellipsoid may then be exploited by using RCB techniques in the
reduced-dimension space. In [1, 7], only data-independent dimen-
sionality reduction was considered. Here, we extend the framework
developed in [1, 7] to data-adaptive dimensionality reduction, pro-
viding new results useful for exploiting in a variety of scenarios that
occur in practical applications of robust beamforming algorithms.

The problem under consideration is the design of RDRCBs
that are suitable for large arrays. We consider Krylov subspace

∗This work was supported by MOD under contract from the Centre for
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techniques for data-adaptive dimensionality reduction and use the
Powers-of-R (PoR) [8–10] and Conjugate-Gradient (CG) [11, 12]
algorithms to compute dimension reducing transforms, which are
used to form novel CG-based and PoR-based RDRCBs suitable for
beamforming large arrays. We exploit the fact that the CG algorithm
results in a diagonal reduced-dimension sample covariance matrix
to give particularly low-complexity data-adaptive beamforming al-
gorithms. Scenarios with large planar arrays are investigated along
with both non-degenerate ellipsoidal and spherical uncertainty sets.

In the following, E {·}, (·)T , (·)H , (·)−1 and (·)† denote the
expectation, transpose, Hermitian transpose, inverse and Moore-
Penrose pseudo-inverse operators, respectively. Furthermore, ‖·‖2,
Nl

X, ΠX and Π⊥
X denote the two-norm, a basis for the left null-

space of X, the orthogonal projector onto the range space of X and
the orthogonal projector onto the space perpendicular to the range
space of X, respectively. Moreover, X ≥ 0 or X > 0 mean that the
Hermitian matrix X is +ve semi-definite or +ve definite.

1.1. Robust Capon Beamforming

We model the kth element-space array snapshot xk ∈ C
M as

xk = a0s0,k + nk, (1)

where a0, s0,k and nk denote the true signal-of-interest (SOI) ASV,
the scalar SOI complex amplitude and an additive zero-mean com-
plex Gaussian vector that incorporates the noise and the interfer-
ence. Assuming s0,k is zero mean and uncorrelated with nk, the
array covariance matrix can be written as Rx = E

{

xkx
H
k

}

=

σ2
0a0a

H
0 +Qx, where Rx > 0, σ2

0 = E
{

|s0,k|2
}

is the SOI power
and Qx = E

{

nkn
H
k

}

is the noise plus interference covariance ma-
trix. In practice, Rx is replaced by the sample covariance matrix

R̂x =
1

K

K
∑

k=1

xkx
H
k , (2)

formed from K snapshots. In [3] (see, also [6]), RCBs were derived
by solving maxσ2,a σ2 s.t. Rx − σ2aaH ≥ 0, a ∈ EM (ā,E),
which can be reduced to [3]

min
a

a
H
R

−1
x a s.t. a ∈ EM (ā,E). (3)

The M -dimensional element-space ellipsoid EM (ā,E) is parame-
terized by ā, which often represents the assumed ASV, and E ≥ 0 ∈
C

M×M , and can be written as

EM (ā,E) =
{

a ∈ C
M

∣

∣ [a− ā]HE[a− ā] ≤ 1
}

. (4)

For non-degenerate sets, E > 0. To solve (3), we assume that

ā
H
Eā > 1. (5)
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When E = (1/ǫ)I, (4) reduces to a spherical uncertainty set,
‖a− ā‖22 ≤ ǫ, with radius

√
ǫ and (5) becomes ‖ā‖22 > ǫ. For

non-degenerate ellipsoids, we can factor E = E
H
2 E

1

2 and form
ă = E

1

2 a, ˘̄a = E
1

2 ā and R̆ = E
1

2RE
H
2 . Then, (3) can be

re-written using the following spherical constraint [4]

min
ă

ă
H
R̆

−1
ă s.t.

∥

∥ă− ˘̄a
∥

∥

2

2
≤ 1. (6)

As shown in [4], (6) can be solved via the eigenvalue decomposition
(EVD) of R̆, where computing the EVD is the most computation-
ally expensive step. Denoting ˆ̆a as the solution to (6), the solution
to (3) is formed as â0,RCB = E− 1

2 ˆ̆a. The RCB power estimate

is formed as σ̂2
0,RCB =

‖â0,RCB‖2

2
/M

âH
0,RCBR

−1
x â0,RCB

and the weight vector as

ŵRCB =
R−1

x
â0,RCB

âH
0,RCBR

−1
x â0,RCB

.

2. A DATA-ADAPTIVE REDUCED-DIMENSION ROBUST
CAPON BEAMFORMING FRAMEWORK

In reduced-dimension methods, the kth element-space snapshot,
xk ∈ C

M , is projected onto an N -dimensional subspace (with
N < M ) using a dimension reducing transform D ∈ C

M×N ,
yielding the reduced-dimension snapshot, yk = DHxk, where
yk ∈ C

N . As shown in [1, 7], this leads to the following RDRCB
problem maxσ2,b σ2 s.t. Ry − σ2bbH ≥ 0, b ∈ EN (b̄,F),
where b = DHa, Ry = DHRxD and EN (b̄,F) denote the
reduced-dimension array steering vector, covariance and uncertainty
ellipsoid, respectively, which can be reduced to

min
b

b
H
R

−1
y b s.t. b ∈ EN (b̄,F). (7)

The following theorem is used to derive EN (b̄,F).
Propagation Theorem: [1, 7] The propagation of the element-

space ellipsoid (4), with E ≥ 0 ∈ C
M×M , through the mapping

DHa− INb = 0, where D ∈ C
M×N has full column rank, yields

the ellipsoid EN (b̄,F) [see (4)] with

b̄ = D
H
ā (8)

F = D
†(E−EN

l
D[(Nl

D)HEN
l
D]†(Nl

D)HE)(D†)H . (9)

For data-adaptive dimensionality reduction, b̄ and F need up-
dating each time D is updated. If we use (9) for updating, then we
observe that Nl

D, [(Nl
D)HENl

D]† and D† are needed, which are
expensive to compute. Fortunately, if the original element-space el-
lipsoid is non-degenerate, such that E > 0, we can simplify (9).
Then, [(Nl

D)HENl
D]† = [(Nl

D)HENl
D]−1 and we can write

F = D
†
E

1

2Π
⊥

E
1

2 Nl
D

E
1

2 (D†)H

= D
†
E

1

2Π
E

−

1

2 D
E

1

2 (D†)H

=
[

D
H
E

−1
D
]−1

, (10)

where Π⊥

E
1

2 Nl
D

= I − E
1

2Nl
D[(Nl

D)HENl
D]−1(Nl

D)HE
1

2 . The

M × M inverse E−1 can be computed offline and therefore, the
online computation of F reduces to the computation of an N × N

inverse. Note that, in general, we will need to compute F
1

2 , F
H
2 and

F− 1

2 [see Section 1.1], which can all be obtained from the EVD of

[

DHE−1D
]

. Note also that, in general, we will require the EVD of

R̆y = F
1

2RyF
H
2 = F

1

2DHRxDF
H
2 . Thus, in general, two N -

dimensional EVDs will be required, one decomposing R̆y and one
decomposing

[

DHE−1D
]

. When the element-space uncertainty set
is a sphere, so that in (4), E = 1

ǫ
I, then

F =
1

ǫ
(DH

D)−1. (11)

In this case, if D is orthogonal, F in (11) reduces to F = 1
ǫ
IN .Thus,

if the element-space set is a sphere and the dimension reducing trans-
form is orthogonal, then F can be written analytically and only one
EVD is required. Denoting b̂0 as the solution to (7), we form the
RDRCB weight vector as

ŵRDRCB =
R−1

y b̂0

b̂H
0 R−1

y b̂0

. (12)

The weight vector (12) operates on the reduced-dimension data,
whilst ŵRDRCB,ES = DŵRDRCB operates on the original element-
space data. An estimate of a0 can be formed as â0 = (DH)†b̂0 =

D(DHD)−1b̂0, which indicates that â0 belongs to the column
space of D. Given â0, we form the RDRCB SOI power estimate as

σ̂2
0,RDRCB =

(‖â0‖22 /M)

b̂H
0 R−1

y b̂0

=
b̂H
0 (DHD)−1b̂0

M b̂H
0 R−1

y b̂0

. (13)

3. DATA-ADAPTIVE DIMENSIONALITY REDUCTION

Here, we consider Krylov methods that use the PoR and CG algo-
rithms to compute dimension reducing transforms. The associated
RDRCBs can be formed by exploiting these transforms in the frame-
work presented in Section 2.

3.1. Non-Orthogonal PoR Krylov Basis

The standard PoR-based dimension reducing transform is given by

D =

[

ā

‖ā‖
2

R̂xā

‖R̂xā‖
2

. . .
R̂N−1

x
ā

‖R̂N−1
x ā‖

2

]

, (14)

which we term the non-orthogonal PoR (NO-PoR) dimension reduc-
ing transform, and can be formed iteratively. That is, starting with
κ1 = ā, and D1 = ā

‖ā‖
2

, for i = 2, . . . , N , calculate

κi = R̂xκi−1, (15)

di =
κi

‖κi‖2
(16)

and

Di =
[

Di−1 di

]

. (17)

The cost of calculating κi from κi−1 is O(M2) and calculating di

is O(M) . Thus, calculating the NO-PoR dimension reducing trans-
form costs O(NM [M+1]) flops. Due to the non-orthogonal nature
of the transform, two N -dimensional EVDs are required to compute
the NO-PoR RDRCB, even if the element-space set is spherical.
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3.2. Orthogonal PoR Krylov Basis

In [9], the orthogonal PoR (O-PoR) Krylov subspace technique was
proposed and suggested for applications where the model order is
highly variable and time-varying. To form the O-PoR dimension
reducing transform, let κ1 = ā, D1 = ā/ ‖ā‖2, and for i =
2, . . . , N , calculate

κi = Π
⊥
Di−1

R̂xκi−1 (18)

di =
κi

‖κi‖2
(19)

and
Di =

[

Di−1 di

]

, (20)

where Π⊥
Di−1

= I −
∑i−1

k=1 dkd
H
k can be updated efficiently in

O(M2) operations using Π⊥
Di

= Π⊥
Di−1

− did
H
i . Given Π⊥

Di−1
,

updating κi and di costs O(2M2) and O(M). Thus, the calculation
of one new column of D costs O(3M2 +M), so that calculation of
the O-PoR dimension reducing transform costs O(NM [3M + 1]),
which is roughly three times more expensive than calculating the
NO-PoR transform. Since the resulting dimension reducing trans-
form is orthogonal, as discussed earlier, for spherical uncertainty sets
only one EVD is required to compute the O-PoR RDRCB.

3.3. Conjugate Gradient Method

Using the approach outlined in [11], the CG dimension reducing
transform D = [d1 . . .dN ] can be formed by setting, d1 = ā,
r1 = −ā, and then for i = 2, . . . , N , update using

αi = − dH
i ri

dH
i R̂xdi

, (21)

ri+1 = ri + αiR̂xdi, (22)

βi =
dH
i R̂xri+1

dH
i R̂xdi

(23)

and
di+1 = −ri+1 + βidi. (24)

The cost of computing R̂xdi is O(M2). Given R̂xdi, the cost of
computing αi is O(2M). Updating ri+1 is O(M). The cost of
computing βi, given R̂xdi and the denominator of αi is O(M).
Then, updating di+1 is O(M). Thus, the total cost to compute a
new column of the CG dimension reducing transform is O(M2 +
5M). The total cost to calculate the CG transform is O(NM [M +
5]), which is almost the same as calculating the NO-PoR transform.
Since the CG transform is non-orthogonal, we would expect that
we would need two EVDs to compute the CG-RDRCB. However,
in the next section, we illustrate how a fast CG-based RDRCB can
be obtained by exploiting that the CG transform diagonalizes the
sample covariance matrix so that

R̂y = D
H
R̂xD = ΛCG, (25)

where ΛCG is a diagonal matrix.

4. FAST CONJUGATE-GRADIENT RDRCB

Here, we illustrate how only one N -dimensional EVD is required
to solve the CG-RDRCB under either spherical or non-degenerate
uncertainty. In general, we will be solving

min
b

b
H
R

−1
y b s.t.

[

b− b̄
]H

F
[

b− b̄
]

≤ 1. (26)

Usually, at this stage one would transform with F
1

2 to give a spher-
ical uncertainty set. However, from (25), we observe that R−1

y =

Λ−1
CG , so that (26) can be written as

min
b

b
H
Λ

−1
CG b s.t.

[

b− b̄
]H

F
[

b− b̄
]

≤ 1. (27)

Noting (10), we let M = Λ
− 1

2

CG DHE−1DΛ
−H

2

CG , b̌ = Λ
− 1

2

CG b and
ˇ̄b = Λ

− 1

2

CG b̄, and rewrite (27) as

min
b̌

b̌
H
b̌ s.t.

[

b̌− ˇ̄b
]H

M
−1

[

b̌− ˇ̄b
]

≤ 1. (28)

We form the Lagrangian using the real Lagrange multiplier µ

L(b̌, µ) = b̌
H
b̌+ µ

(

[

b̌− ˇ̄b
]H

M
−1

[

b̌− ˇ̄b
]

− 1

)

. (29)

Setting ∂L(b̌,µ)

∂b̌H = 0 yields

ˆ̌
b =

(

M

µ
+ I

)−1
ˇ̄b = ˇ̄b−

[

µM−1 + I
]−1 ˇ̄b, (30)

where we have used the matrix inversion lemma [13] to obtain the
term after the second equality. Using (30) in the constraint equation
in (28) yields

h(ˆ̌b, µ) = ˇ̄bH [

µM−1 + I
]−1

M
−1 [µM−1 + I

]−1 ˇ̄b. (31)

Letting M = UΛUH denote the EVD of M, where Λ =
diag

{

[ λ1 . . . λN ]
}

is a diagonal matrix containing the eigen-
values in non-increasing order on its main diagonal and U contains
the associated eigenvectors, we can write (31) as

h(ˆ̌b, µ) =

N
∑

n=1

λn|cn|2
(µ+ λn)

2 , (32)

where cn is the nth element of c = UH ˇ̄b. Since we can write

M = M
1

2M
H
2 , where M

1

2 = Λ
− 1

2

CG DHE− 1

2 , we know that M
is non-negative definite [13, 14] and therefore, it has non-negative

eigenvalues. Thus, h(ˆ̌b, µ) is a monotonically decreasing function
of µ > 0. For µ = 0, we obtain

h(ˆ̌b, 0) = ˇ̄bH
M

−1 ˇ̄b = b̄
H
[

D
H
E

−1
D
]−1

b̄ = b̄
H
Fb̄. (33)

Note that, to exclude a non-trivial solution, we require that b̄HFb̄ >

1. Since we require h(ˆ̌b, µ) = 1, it is clear that µ 6= 0. Further, it is

clear that limµ→∞ h(ˆ̌b, µ) = 0, therefore, there is a unique solution

µ > 0 to h(ˆ̌b, µ) = 1, which can be found, e.g., by Newton search.

Once µ has been found, ˆ̌
b is found using (30) and the solution to

(27) is formed as b̂0 = Λ
1

2

CG
ˆ̌
b. We can use b̂0 and R−1

y = Λ−1
CG

in (12) to form the adaptive weights. To form the power estimate
using (13), we need to evaluate

[

DHD
]−1

. If the uncertainty set
is spherical, then we can evaluate this quantity from the EVD of M
and ΛCG, which are already available. For a general, non-degenerate
ellipsoid this quantity will need computing.

Fig. 1 shows the relative complexities as N is increased from 1
to M , for M = 320, where for the NO-PoR and CG-based RDRCBs
under non-degenerate (ND) uncertainty, we distinguish between ap-
plications that only require weight estimation and those which also
need power estimation. The results illustrate that the CG-based al-
gorithms are significantly cheaper than the other methods.
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Fig. 1. Relative complexities of different data-dependent RDRCBs.

5. NUMERICAL EXAMPLES

In this section, we assess the performance of the proposed al-
gorithms through numerical examples. For an M = 320, half-
wavelength spaced planar array with Mh = 40 elements in a row
and Mv = 8 rows, we simulated data with covariance matrix
Rx = σ2

0a0a
H
0 +Qx, with Qx =

∑d
i=1 σ

2
i aia

H
i +σ2

sI+σ2
isoQiso,

where Qx consists of terms due to d zero-mean uncorrelated in-
terferences, where for the ith interferer σ2

i and ai denote the
source power and ASV, a term modeling sensor noise σ2

sI, with
sensor noise power σ2

s , and a term modeling an isotropic am-
bient noise σ2

isoQiso, with power σ2
iso. The isotropic noise co-

variance is given by [Qiso]m,n = sinc[πgmn], where gmn is
the distance between the mth and nth sensors in units of wave-
length. The ith source (SOI or interference) ASV is simulated
according to ai = a(θ̄i + δi) + σe,iei, where θ̄i =

[

θ̄i, φ̄i

]T

denotes the assumed AOA, comprising the assumed azimuth an-
gle θ̄i and the assumed elevation angle φ̄i, δi = [δθi , δφi

]T

denotes the mismatch in the assumed AOA, comprising the mis-
match in azimuth angle δθi and the mismatch in elevation an-
gle δφi

, σe,i denotes the length of the arbitrary error vector and
ei is a zero-mean complex circularly symmetric random vector
with unit norm. Unless stated otherwise, in the following, we
have assumed d = 3, θ̄0 = 89.9◦, φ̄0 = 94.8◦, σ2

0 = 40 dB,
θ̄1 = 70◦, φ̄1 = 94.8◦, σ2

1 = 30 dB, θ̄2 = 85◦, φ̄2 = 94.8◦,
σ2
2 = 20 dB, θ̄3 = 130◦, φ̄3 = 94.8◦ and σ2

3 = 15 dB. We assume
that δθ0 is a random variable uniformly distributed over the interval
[−0.72, 0.72]◦ and δφ0

is uniformly distributed over [−3.6, 3.6]◦,
whilst for i = 1 to d, δi = 0. For i = 0 to d, σe,i = 1. Therefore,
the SOI ASV is subjected to both AOA and arbitrary errors. We
assume azimuth and elevation beams spaced at 1/Mh and 1/Mv in
cosine space and, using the methods described in [15], design non-
degenerate minimum volume ellipsoidal (NDMVE) sets, whose er-
ror sphere radii are set to ǫ̌ = 10, and tight-spherical uncertainty sets,
based on the expected AOA errors given the spacing of the beams.
We refer the reader to [15] for further details. Thus, we exam-
ine the following RDRCBs: NO-PoR-Spherical, NO-PoR-NDMVE,
O-PoR-Spherical, O-PoR-NDMVE, CG-Spherical and CG-NDMVE,
where we append Spherical or NDMVE to denote that we are
exploiting a tight spherical uncertainty set or a non-degenerate
NDMVE uncertainty set. We also examine the standard non-robust
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Fig. 2. Azimuth spectra, for the horizontal elevation at 94.8◦, where
the true AOAs and powers are shown by the black circles.
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Fig. 3. SINR versus SOI power.

reduced-dimension MVDR (RDMVDR) versions: NO-PoR-MVDR,
O-PoR-MVDR and CG-MVDR. RDMVDR weights can be formed
using (12), but with b̄ in place of b̂0. We assume that N = 5
and that only K = 80 snapshots are available to estimate the sam-
ple covariance matrix (2), representing a highly snapshot deficient
scenario, not uncommon in, e.g., passive sonar. Fig. 2 shows the
azimuth spectra, illustrating that the RDRCB variants are able to
correctly estimate the power, whereas the non-robust RDMVDR-
based variants suffer severe SOI cancellation. Fig. 3 shows the
output SINR versus the SOI power, obtained using MC = 200 Monte
Carlo simulations. The results for the CG and O-PoR methods are
the same, whilst the NO-PoR results diverge for very high SOI
powers. This divergence is a result of numerical instability in the
NO-PoR algorithm. It is clear that the robust RDRCB versions,
exploiting spherical or non-degenerate NDMVE sets, provide much
better robustness at higher SOI powers compared to the standard
RDMVDR-based implementations.
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