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ABSTRACT

The configuration of an antenna array plays a fundamental
role in the ability of array signal processing to mitigate in-
terference. We propose in this paper a novel reconfigurable
adaptive linear array scheme to overcome the drawbacks of
traditional array processing. We employ the effective carrier
to noise density ratio (C/N0), which is a reliable measure
of the performance in the Global Navigation Satellite Sys-
tems (GNSS) applications, expressing its dependence on the
spatial separation through the Spatial Correlation Coefficient
(SCC), with a lower SCC giving better interference mitigation
performance. We then formulate the problem of determining
the optimal orientation of a linear array in terms of the min-
imization of SCC. Simulation results show that the proposed
method is effective in reducing the SCC and improving the
effective C/N0. Finally, we propose a practical implementa-
tion where the array orientation is chosen from a number of
present orientations.

Index Terms— DOA, GNSS, Reconfigurable adaptive
linear array, SCC, STAP

1. INTRODUCTION

Global Navigation Satellite Systems (GNSS) are vulnerable
to Radio Frequency Interference (RFI) due to the limited
transmitting power from the satellite. Consequently, adaptive
antenna arrays have been proposed to boost the received sig-
nal and suppress the RFI. As the array configuration plays a
fundamental role in the array signal processing performance,
it is an important design problem [1, 2, 3]. However, most of
the work in the literature focuses on adaptive beamforming
and filtering techniques with the array configuration taken
to be fixed [4, 5, 6]. Under certain scenarios, the number
of available Degree of Freedom (DOF) may be substan-
tially reduced and the performance of adaptive array severely
degraded by the fixed array architecture. This problem is ex-
acerbated in the case of a linear array where the array exhibits
a cone of ambiguity [7]. The linear array cannot distinguish
the desired signal and interference if they are in the same

Fig. 1. Block diagram of reconfigurable adaptive linear array

ambiguity cone. This situation can only be rectified if the
orientation of the linear array is changed.

In this paper, we propose a novel reconfigurable linear ar-
ray method to adaptively adjust the array orientation in order
to overcome the drawbacks of existing adaptive array process-
ing algorithms. The block diagram of this method is shown
in Fig. 1. The linear array is placed along an initial direc-
tion and beamforming is implemented under this array orien-
tation. The GPS receiver decodes the navigation information
which gives the accurate Direction of Arrival (DOA) of the
satellite signal. The DOA of interference, on the other hand,
is estimated prior to the array processing step. The optimal
array orientation is then derived from the DOAs of the satel-
lite signal and interference. Subsequently array processing
algorithm is applied based on this optimal array configuration
to enhance the receiver’s performance. Therefore, the dis-
tinguishing aspect of the proposed technique is in adopting
a strategy of adaptively reconfiguring both the antenna array
configuration as well as setting the weights of the adaptive
filter in order to maximize the interference suppression.

The paper is organised as follows. In Section II the math-
ematical theory is formulated and the relationship between
the SCC and effective C/N0 is described as well. Section III
presents an effective method to estimate the DOA of the in-
terference. The technique for determining the optimal array
orientation is also given in this section. In Section IV a set of
representative numerical results are reported and discussed.
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Finally, some conclusions are drawn in Section V.

2. MATHEMATICAL FORMULATION

The effective C/N0 is an important indicator of the achiev-
able performance of GNSS receivers [8]. The C/N0 is in-
timately related to the Spectral and Spatial Separation Coef-
ficient (SSSC), [9], which takes into account the spatial di-
mension of the antenna array in order to quantify its effect
on the desired signal. The spatial separation between interfer-
ence and the desired signal, on the other hand, is characterized
with a single parameter called the Spatial Correlation Coeffi-
cient (SCC) [1]. The definition of these parameters and the
relationship between them are mathematically formulated in
what follows.

Assuming the desired signal and interference are coming
from (θs, φs) and (θj , φj) respectively, then the u-space DOA
parameters are

s̃ = [usx usy]
T , j̃ = [ujx ujy]

T . (1)

where uix = cos θi cosφi and uiy = cos θi sinφi, for i =
s, j. The superscripts T and H denote the transpose and con-
jugate transpose respectively. The steering vectors of the de-
sired signal and interference are

vs = ejk0p̃s, vj = ejk0p̃j. (2)

with p being the N × 2 matrix whose entries are the positions
of antenna elements. Let the linear array be at azimuth angle
ϕ. Then the nth row of p is

pn = [nd cosϕ nd sinϕ] = ndvo. (3)

with the array orientation vector to be

vo = [cosϕ sinϕ] (4)

Here, the inter-element space d is set to be half the wave-
length. Assuming the noise and interference to be uncorre-
lated, their covariance matrix is given by

Rn = σ2I + PjvjvHj , (5)

where σ2 is the thermal noise power, Pj that of the interfer-
ence. The optimal array weight vector based on maximum
signal to interference ratio is then, [10],

wopt = γR−1
n vs, (6)

where γ is an arbitrary constant. At the output of the adaptive
array filter, the signal to interference plus noise ratio becomes

SINRout = PsvHs R−1
n vs. (7)

where Ps denotes the signal power. Applying the Sherman-
Morrison-Woodbury identity to Eq.(5) and assuming the ther-
mal noise power is much smaller than the interference, Eq.
(6) can be written as

Fig. 2. Relationship between SCC and adaptive array weight
vector

wopt ≈ k(vs −
ρsj
ρjj

vj) = k(vs − αsjvj), (8)

where k = γ/σ2, ρsj = vHj vs, ρss = vHs vs and ρjj = vHj vj .
We can see that when the interference is much stronger than
the thermal noise, then the adaptive array weight vector be-
comes orthogonal to the interference from Fig. 2 and thus
the adaptive array processor approximates a null-steering al-
gorithm. Now setting, without loss of generality, ‖vj‖ =

‖vs‖ =
√
N (N is the number of antennas) we define

αsj =
ρjs√

ρjj
√
ρss

=
ρjs

‖vj‖‖vs‖
=
ρjs
N
. (9)

Then the SINRout can be written as

SINRout ≈
NPs
σ2

(1− |αsj |2), (10)

We call αsj the spatial correlation coefficient (SCC). Its ab-
solute value is bounded between zero and one and can be in-
terpreted as cos γ as seen from Fig. 2. The smaller the SCC
is, the more separable in space the desired signal and inter-
ference are. Now substituting the array weight vector Eq. (6)
into the effective C/N0 [9] and using the SCC expression Eq.
(9) yields

(
C

N0
)eff =

NP ds
GnN0

(1− |αsj |2). (11)

where P ds is the satellite signal power after code de-spreading,
N0 is the white noise power density and Gn is the noise
processing gain. Eq. (11) reveals that the effective C/N0

does not depend on the Doppler separation any more be-
cause the adaptive antenna array cancels the interference
completely (Recall that the array weight vector essentially
implements a null-steering algorithm when the interference
is much stronger than white noise). In summary, the effective
C/N0 is a function of both the number of antennas, N and
the SCC parameter. When the number of antennas N is fixed,
the effective C/N0 can be improved by changing the array
configuration (here rotating the linear array) to reduce the
SCC value under the specific scenario.

4155



Fig. 3. Orientation calculated with projection method

3. OPTIMAL ORIENTATION OF LINEAR ARRAY

In order to calculate the optimal orientation that gives the min-
imum SCC value, the DOAs of the desired signal and inter-
ference must be known or estimated. Although several al-
gorithms [11] have been proposed to solve this problem, we
employ an effective discrete Fourier transform (DFT)-based
technique due to its simplicity, robustness, and excellent per-
formance, [12]. We then present the method of calculating the
optimal array orientation according to the estimated DOAs of
the desired signal and interference.

The estimation of the DOA of a signal incident on the
array can be solved as a frequency estimation problem, [7].
A linear array can only resolve one direction which is in the
plane containing both the signal and the array. As the DOA
problem is two-dimensional, we use two 1-Dimensional spa-
tial DFT measurements u1 = cosβ1 and u2 = cosβ2 ob-
tained from two orthogonal orientations of the array, ϕ1 and
ϕ2 = ϕ1 +

π
2 . Here β1,2 is the angle between the linear array

and the estimated signal and the relationship among β, array
orientation ϕ, the estimated signal’s azimuth angle φ and el-
evation angle θ is cosβ = cos θ cos(φ − ϕ) as shown in Fig.
3. The Interpolation on Fourier Coefficients method of [12] is
then used to get fine estimates of the DOA parameters (here
u1 = ux and u2 = uy by choosing ϕ1 = 0).

Having derived the DOAs of the signal and interference,
we can now find the optimal array orientation as follows. The
u-space DOA parameters in Eq. (1) are also the projections
of two point sources on the x-y plane shown in Fig. 3. Sub-
stituting Eq. (1), Eq. (2), Eq. (3) into Eq. (9), the SCC can be
expressed as

αsj =
1

N

(N−1)/2∑
n=−(N−1)/2

ejk0dn[cosϕ(usx−ujx)+sinϕ(usy−ujy)].

(12)
Next we project s̃ and j̃ onto the line along the array orienta-
tion which we denote by t̃s and t̃j shown in Fig. 3.

t̃s =
vHo vo
vovHo

s̃, t̃j =
vHo vo
vovHo

j̃. (13)

Now, the distance between t̃s and t̃j is

Fig. 4. Normalized effective C/N0 and SCC versus different
orientation of linear array

L =‖ t̃s−t̃j ‖2= | cosϕ(usx−ujx)+sinϕ(usy−ujy)|. (14)

Substituting Eq. (14) into Eq. (12) yields

αsj =
1

N

(N−1)/2∑
n=−(N−1)/2

ejk0dnL =
1

N

sin(N2 k0dL)

sin( 12k0dL)
. (15)

We can see that there is sinc function relationship between the
value of SCC and L. So the optimal solution should satisfy

L =
2m

N
, (16)

where m is an integer which is not divisible by N and L ≤
‖s̃ − j̃‖. When a solution exists, we can find an orientation
that makes the SCC become zero. Otherwise, The orientation
which is parallel to the line passing through s̃ and j̃ (such as
Orientation 2 in Fig. 3) is the optimal solution. It is clear that
the worst performance occurs when L = 0 (such as Orienta-
tion 1 in Fig. 3), which means that t̃s and t̃j are the same point
and the SCC has the maximum value one.

The final optimal orientation of a linear array should be
rotated from the orientation 2 in Fig. 3 by an angle δ such
that

cos δ =
L

‖s̃− j̃‖
=

2m/N√
(usx − ujx)2 + (usy − ujy)2

. (17)

Then the optimal orientations of a linear array which can give
the smallest SCC are

ϕ = ϕo ± δ(mod π), with tanϕo =
usy−ujy

usx−ujx
. (18)

4. SIMULATION RESULTS

We use a linear array with 5 half-wavelength spaced an-
tenna elements to simulate the proposed strategy. In the
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Fig. 5. Beampattern versus different orientations of linear ar-
ray

simulations, we set the signal-to-noise ratio to −20dB
and interference-to-noise ratio to 10dB. Let the satel-
lite signal and interference have the same azimuth angle
φs = φj = 30◦, but different elevation angles θs = 90◦ and
θj = 30◦ respectively. Furthermore we assume that, in the
ideal case, the linear array can be rotated around its central
element continuously from 0◦ to 180◦. We get four optimal
orientations ϕ = 7◦, 52◦, 92◦, 147◦ using Eq. (18). In these
cases, the satellite signal and interference are orthogonal with
each other, and the smallest SCC (zero) and highest C/N0

result. When the array has an orientation along the direction
ϕ = 120◦, we get the maximum SCC and minimum C/N0.
These results are confirmed by the simulation results shown
in Fig. 4.

We can clearly see that the effective C/N0 has an in-
verse relationship with the SCC in agreement with Eq. (11).
The corresponding beampatterns of different orientations us-
ing the optimal array weight vector Eq. (6) are shown in Fig.
5. We can conclude that the linear array loses its function
completely when it is rotated along the ϕ = 120◦ direc-
tion and gives the best beampattern when it is placed along
ϕ = 52◦ direction.

An important fact to note is that the C/N0 curve is nearly
flat when SCC is within the range between 0.1 and 0.5, which
occurs over a wide range of angles. This implies that finely
positioning the array is not necessary. Therefore instead of
continuously rotating the array, a more practical strategy is
to discretely position the array by switching various antennas
in and out of the receiver front end to choose the most suit-
able orientation under the specific scenario. Looking at such a
strategy here, let there beM different orientations at equal an-
gle intervals (each interval being (180/M)◦). The SINR loss
of the discrete case with respect to the optimal orientation is
shown in Fig. 6 againstM . We can see thatM = 4 uniformly
distributed orientations are enough to guarantee SINR loss is

Fig. 6. Effective C/N0 loss versus the number of orientations

less than 0.1dB. Therefore, using switching antennas in and
out of the receiver front end to choose the most suitable ori-
entation is an acceptable and more practical substitute for the
continuous method.

5. CONCLUSION

In this paper, the effect of different orientations of linear ar-
ray on the performance of adaptive array processing is inves-
tigated and a new reconfigurable adaptive linear array method
is proposed to overcome the existing weaknesses of conven-
tional array processing technique based on the fixed array
structure. Adaptively changing the orientation of the linear
array can separate the desired signal and interference in space
as much as possible and thus the effective C/N0 can be im-
proved. Simulation results also show that using switching
method to reconfigure the linear array to the suitable orien-
tation discretely is a good substitute to the continuous one.

6. RELATION TO PRIOR WORK

In this work we proposed a novel reconfigurable adaptive lin-
ear array method which combines array processing and adap-
tively changing the array orientation together. Most of the
prior work either focused on developing adaptive beamform-
ing and filtering technique [4, 5, 6] to suppress the interfer-
ence under the predetermined array configuration or does not
utilise adaptive array algorithm [13, 14, 15] to suppress in-
terference adaptively. Therefore the distinguishing aspect of
this proposal is in adopting a strategy of adaptively reconfig-
uring both the antenna array configuration as well as setting
the weights of the adaptive filter in order to maximize the in-
terference suppression.
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