
QUATERNION-BASED WORST CASE CONSTRAINED BEAMFORMER BASED ON
ELECTROMAGNETIC VECTOR-SENSOR ARRAYS

Xirui Zhang⋆† Wei Liu† Yougen Xu⋆ Zhiwen Liu⋆

⋆ School of Information and Electronics
Beijing Institute of Technology, Beijing, 100081, China

† Communications Research Group
Department of Electronic and Electrical Engineering

University of Sheffield, Sheffield, S1 3JD, United Kingdom
xi-rui.zhang@sheffield.ac.uk

ABSTRACT

A robust adaptive beamforming scheme based on two-component
electromagnetic (EM) vector-sensor arrays is proposed by extending
the well-known worst-case constraint into the quaternionic domain.
After defining the uncertainty set of the desired signal’s quaternion-
ic steering vector, two quaternion-based constrained minimization
problems are derived. We then reformulate them into two real-
valued convex quadratic problems, which can be easily solved via
the second-order cone (SOC) programming approach. Numeri-
cal simulations show that our quaternion-based robust beamformer
significantly outperforms the sample matrix inversion minimum
variance distortionless response (SMI-MVDR) beamformer and
the quaternion Capon (Q-Capon) beamformer in the presence of
steering vector mismatches.

Index Terms— Robust adaptive beamformer, vector-sensor ar-
ray, quaternion, worst case constraint.

1. INTRODUCTION

Adaptive beamforming with EM vector-sensor arrays can exploit not
only the directions of arrival (DOAs) of the impinging signals but al-
so their polarizations. The so-called crossed-dipole and tripole (the
earliest EM vector-sensors, known as ‘polarization diverse anten-
nas’) were first introduced into the field of adaptive arrays in [1, 2].
Based on such a system, the adaptive beamforming problem was
studied in detail in terms of the output signal-to-interference-plus-
noise ratio (SINR) in [3]. Furthermore, it was shown that a ‘com-
plete’ EM vector-sensor (measuring the six components of an EM
field at the same point) with identical electric and magnetic noise
power can eliminate the angular grating nulls completely. Moreover,
with the analysis in [4], it was concluded that the output SINR is de-
termined by both DOA and polarization differences of the impinging
signals in the case of unequal noise power.

The above methods assume an exactly known steering vector for
the desired signal. When the estimation of the steering vector is im-
precise, especially with look direction and sensor position errors, the
performance of conventional MVDR beamformers will deteriorate.
To enhance its robustness, many methods have been proposed, such
as diagonal loading [5], and the approach based on the optimization
of worst case performance [6, 7, 8, 9, 10, 11, 12]. In particular, the
worst-case constrained beamformer (WCCB) can be considered as

one specific type of the diagonal-loading scheme, where the loading
factor is determined based on the known level of uncertainty of the
desired signal’s steering vector.

Very recently, improved robustness against steering vector mis-
match error has been shown by quaternion formulation. The quater-
nionic model of a two-component vector-sensor array was firstly
provided in [13, 14], and a multiple signal classification (MUSIC)-
like scheme was applied accordingly. In adaptive beamforming, the
quaternionic version of the conventional MVDR beamformer has
been derived with a two-component EM vector-sensor array in [15,
16], where a better performance is obtained in the presence of steer-
ing vector mismatch error. However, the well-known WCCB has
not been investigated in the hypercomplex domain yet. Therefore,
a novel quaternionic adaptive beamformer based on the worst-case
constraint is proposed here to tackle the steering vector mismatch
problem. Two adaptive algorithms are derived in detail and as will
be shown in our simulations, they significantly outperform both the
SMI-MVDR beamformer [17], and the Q-Capon beamformer [15].

The rest of this paper is organized as follows. Section 2 intro-
duces the quaternion-based signal model for a two-component EM
vector-sensor array, and gives the theoretical derivation of the two
proposed algorithms. Numerical simulations are provided in Section
3, and conclusions are drawn in Section 4.

2. THE PROPOSED QUATERNIONIC BEAMFORMER
WITH WORST-CASE CONSTRAINT

2.1. Quaternions

A quaternion q ∈ H1 (R,C, and H denote the sets of real numbers,
complex numbers and quaternions, respectively), is defined as

q , q0 + q1i + q2j + q3k , (1)

where q0 , Re{q} ∈ R is the real component, and q1 , Im(1){q},
q2 , Im(2){q}, q3 , Im(3){q} ∈ R are the three imaginary com-
ponents, with units i, j, and k satisfying

ii = jj = kk = −1,

ij = −ji = k; jk = −kj = i; ki = −ik = j. (2)
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Similarly, for a vector v ∈ HL1×1 and a matrix M ∈ HL1×L2 , we
have

v , v0 + v1i + v2j + v3k,

M , M0 +M1i +M2j +M3k, (3)

where vl ∈ RL1×1, and Ml ∈ RL1×L2 , l = 0, · · · , 3. Three
properties used in this paper are introduced as follows. More details
can be found in [18].

Property 1. Given M ∈ HL1×L2 and v ∈ HL2×1, we have

(Mv)▹ = v▹M▹ , (4)

where ‘{}▹’ denotes the conjugate transpose of quaternionic matri-
ces and vectors [18].

Property 2. For a conjugate symmetric quaternionic matrix
M ∈ HL1×L2 and a quaternionic vector v ∈ HL1×1, we have

v▹Mv = v▹
1Mv1, with v1 = v · eϵϑ , (5)

where

ϵ =
q1i + q2j + q3k√

q21 + q22 + q23
, ϑ = arctan

(√
q21 + q22 + q23/q0

)
. (6)

Property 3. The Euclidean-norm of two quaternionic vectors
a,b ∈ HL1×1, satisfies the following two inequalities [19]

∥a+ b∥ ≥ ∥a∥ − ∥b∥, |a▹b| ≤ ∥a∥∥b∥. (7)

2.2. Quaternion-based Signal Model

Consider a uniform linear array (ULA) consisting of N crossed-
dipoles (the typical two-component EM vector-sensor) located along
the y-axis with an adjacent sensor spacing d. As shown in Fig. 1,
the two components of each crossed-dipole are parallel to x− and
y− axes, respectively. Suppose there are M uncorrelated narrow-
band far-field signals {sm(t)}Mm=1 impinging upon the array from
the y − z plane with DOA angles (θ1, · · · , θM ) ∈ [0, π]. All the
incident signals have the same wavelength λ0. Then, the spatial s-
teering vector for the mth signal can be expressed as

as,m =
[
1, e

−j 2πd sin θm
λ0 , · · · , e−j

2π(N−1)d sin θm
λ0

]T
, (8)

where ‘{}T’ denotes the transpose operation. For a crossed-dipole,
the spatial-polarization coherent vector of the mth signal with auxil-
iary polarization angle γm ∈ [0, π/2] and polarization phase differ-
ence ηm ∈ [−π, π), can be written as

ap,m =
[
− cos γm, cos θm sin γmejηm

]T
. (9)

Now, we divide the ULA into two subarrays: one is composed
of all the dipoles pointing along the x−axis, while the other includes
all the dipoles along the y−axis. Then, their steering vectors ax,m ∈
CN×1 and ay,m ∈ CN×1 for the mth signal are

ax,m = − cos γm ·as,m, ay,m = cos θm sin γmejηm ·as,m. (10)

The outputs of these two subarrays can be written as

x(t) =

M∑
m=1

ax,msm(t) + nx(t), (11)

y(t) =

M∑
m=1

ay,msm(t) + ny(t), (12)

x

z

y
d

Fig. 1. A ULA with crossed-dipoles.

where nx(t) and ny(t) ∈ CN×1 denote the corresponding additive
white Gaussian noise vectors.

Thus, the quaternionic output vector q(t) ∈ HN×1 of the
crossed-dipole-based ULA can be defined as

q(t) , x(t) + iy(t) =

M∑
m=1

amsm(t) + n(t) , (13)

where am , ax,m + iay,m ∈ HN×1 is the quaternionic steering
vector, and n(t) , nx+iny ∈ HN×1 the quaternionic noise vector.
Given the k-th snapshot data q[k] ∈ HN×1 of q(t), the sample
quaternionic covariance matrix R̂ ∈ HN×N can be obtained by

R̂ =
1

K

K∑
k=1

q[k]q▹[k]. (14)

2.3. Steering Vector Model

Assume that one of the M incident array signals is the desired one
and its presumed quaternionic steering vector is denoted as ād ∈
HN×1. With steering vector mismatch, there will be a non-zero
quaternionic error vector e ∈ HN×1 between ād and the actual s-
teering vector ad ∈ HN×1, i.e.

ad = ād + e . (15)

We assume that its norm is bounded by a real positive constant ε, i.e.
∥e∥ ≤ ε. Then, the actual steering vector ad can be modelled as
belonging to a steering vector set A defined by

A ,
{
ad|ad = ād + e, ∥e∥ ≤ ε

}
. (16)

From (16), we can see that A is a spherical set where ād is in the
center, whilst ad can be any vector in A.

2.4. Quaternion-based Worst-case Constrained Algorithm 1

Since ad can be any vector in A, in order to have a robust response
to the desired signal, we can impose the following constraint to the
weight vector w ∈ HN×1

min
ad∈A

|w▹ad| ≥ 1 , (17)

which is referred to as the quaternionic worst-case constraint. Under
such a constraint, the magnitude of the array response for all the
steering vectors in set A is constrained to be greater than unity.
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By adopting (17), a novel robust adaptive beamformer, named
quaternionic beamformer with worst-case constraint, can be formu-
lated as follows

min
w

w▹R̂w s.t. min
ad∈A

|w▹ad| ≥ 1 (18)

where R̂ is the sample quaternionic covariance matrix obtained by
(14). In the next, we will reformulate the problem in (18), so that it
can be solved by SOC programming based approach.

Firstly, using the triangle inequality property in (7), we have

|w▹ad| = |w▹ād +w▹e| ≥ |w▹ād| − |w▹e|. (19)

Applying the Cauchy’s inequality in (7) to |w▹e| and with
∥e∥ ≤ ε, we further have

|w▹e| ≤ ∥w∥∥e∥ ≤ ε∥w∥. (20)

Combining (19) and (20) leads to

|w▹ad| ≥ |w▹ād| − ε∥w∥. (21)

As a result, the constrained minimization problem in (18) can be
transformed into

min
w

w▹R̂w s.t. |w▹ād| ≥ 1 + ε∥w∥. (22)

However, due to the absolute operation in the constraint, (22) is
still a nonconvex problem. According to property 2 in (5), the beam-
former’s output power w▹R̂w would not be changed if the quater-
nionic vector w undergoes an arbitrary phase shift. For a given level
of w▹R̂w, we can change the phase of w without affecting |w▹ād|.
Multiplying the weight vector w by an appropriate phase factor, we
can always make w▹ād a real value, whilst keeping the output power
unchanged. Then the constraint in (22) can be rewritten as

Re{w▹ād} ≥ 1 + ε∥w∥, Im(1){w▹ād} = 0,

Im(2){w▹ād} = 0, Im(3){w▹ād} = 0. (23)

Thus, the constrained minimization problem in (22) can be re-
formulated into a convex quadratic problem as follows

min
w

w▹R̂w s.t. Re{w▹ād} ≥ 1 +ε∥w∥,

Im(1){w▹ād} = 0, Im(2){w▹ād} = 0,

Im(3){w▹ād} = 0. (24)

We refer to the above formulation as the quaternion worst-case
constrained beamformer 1 (Q-WCCB-1).

2.5. Quaternion-based Worst-case Constrained Algorithm 2

Following the argument after (22), in the second algorithm, instead
of imposing the constraint on the absolute value of w▹ad, the worst
case constraint is imposed on the real component of w▹ad, given as

min
w

w▹R̂w s.t. min
ad∈A

Re{w▹ad} ≥ 1. (25)

Using (15), we have

Re{w▹ad} ≥ Re{w▹ād} − |w▹e| ≥ Re{w▹ād} − ε∥w∥. (26)

Then, the constraint in (25) can be replaced by

Re{w▹ād} − ε∥w∥ ≥ 1. (27)

The problem (25) can therefore be reformulated into

min
w

w▹R̂w s.t. Re{w▹ād} ≥ 1 + ε∥w∥, (28)

We refer to (28) as the quaternion worst-case constrained beam-
former 2 (Q-WCCB-2).

2.6. SOC Implementation of Q-WCCB-1 and Q-WCCB-2

The constrained minimization problems in (24) and (28) can be
solved by the SOC programming method. A SOC program is a
convex optimization problem with the form as

min fTx s.t. ∥Aix+ bi∥ ≤ cTi x+ di, i = 1, ..., I (29)

where x ∈ RN×1 is the optimization variable, f ∈ RN×1 denotes
the known parameter vector, Ai ∈ RNi×N , bi ∈ RNi×1, ci ∈
RNi×1, di ∈ R, and I is the number of constraints.

Applying the Cholesky decomposition to R̂, we have

R̂ = Q▹Q , (30)

where Q ∈ HN×N is an upper triangular quaternionic matrix. Then
the array’s output power w▹R̂w can be rewritten as

w▹R̂w = w▹Q▹Qw = (Qw)▹(Qw) = ∥Qw∥2. (31)

Now, by adopting a new nonnegative scalar variable ξ and a new
constraint ∥Qw∥ ≤ ξ, the constrained minimization problems in
(24) and (28) can be respectively transformed into

min
w,ξ

ξ s.t. ∥Qw∥ ≤ ξ, ε∥w∥ ≤ Re{w▹ād} − 1,

Im(1){w▹ād} = 0, Im(2){w▹ād} = 0,

Im(3){w▹ād} = 0, (32)

and

min
w,ξ

ξ s.t. ∥Qw∥ ≤ ξ, ε∥w∥ ≤ Re{w▹ād} − 1. (33)

Note that the elements of Q, w and ād are quaternions. To
facilitate the solution of (32) and (33), we need to convert them into
real-valued forms. First of all, Q, w, ād need to be written into the
following forms

Q , Q0 +Q1i +Q2j +Q3k,

w , w0 +w1i +w2j +w3k,

ād , ād,0 + ād,1i + ād,2j + ād,3k, (34)

where Ql ∈ RN×N , wl ∈ RN×1, and ād,l ∈ RN×1, l = 0, 1, 2, 3.
Then, we further define one real-valued matrix and five real-valued
vectors as follows

Q̆ ,


Q0 −Q1 −Q2 −Q3

Q1 Q0 −Q3 Q2

Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0

 ,

w̆ ,
[
wT

0 ,w
T
1 ,w

T
2 ,w

T
3

]T
,

ā
(1)
d ,

[
āT
d,0, ā

T
d,1, ā

T
d,2, ā

T
d,3

]T
,

ā
(2)
d ,

[
āT
d,1,−āT

d,0,−āT
d,3, ā

T
d,2

]T
,

ā
(3)
d ,

[
āT
d,2, ā

T
d,3,−āT

d,0,−āT
d,1

]T
,

ā
(4)
d ,

[
āT
d,3,−āT

d,2, ā
T
d,1,−āT

d,0

]T
. (35)

Based on the above real-valued vectors and matrix, (32) and (33) can
be respectively changed into the SOC forms as

min
w̆,ξ

ξ s.t. ∥ Q̆w̆∥ ≤ ξ, ε∥w̆∥ ≤ w̆Tā
(1)
d − 1,

w̆Tā
(2)
d = 0, w̆Tā

(3)
d = 0, w̆Tā

(4)
d = 0, (36)
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Fig. 2. Output SINR versus input SNR with a fixed sample size 100.

and

min
w̆,ξ

ξ s.t. ∥Q̆w̆∥ ≤ ξ, ε∥w̆∥ ≤ w̆Tā
(1)
d − 1. (37)

By solving the above constrained minimization problems, the
optimum real-valued weight vector w̆ ∈ R4N×1 is obtained. The
optimum quaternionic weight vector wQ−WCBB ∈ HN×1 can then
be obtained by re-arranging the elements of w̆ according to (34)
and (35).

3. SIMULATIONS

In our simulations, we consider a ULA consisting of 10 crossed-
dipoles spaced half a wavelength apart. In all examples, one desired
signal along with two uncorrelated interferences is assumed to
impinge upon the array from the y − z plane with a fixed signal-to-
interference ratio (SIR) of −10 dB. The DOAs of the interferences
are fixed at 30◦ and 60◦. For each scenario, 200 independent runs
are used to calculate each simulation result. Four methods are com-
pared in terms of average output SINR: the two proposed algorithms
Q-WCCB-1 and Q-WCCB-2, the SMI-MVDR beamformer [17],
and the Q-Capon beamformer [15]. In addition, the maximally
achievable SINR denoted by ‘MAX-SINR’ is also displayed in the
simulation results as a benchmark, which is obtained by the Q-
Capon beamformer without steering vector error. The MATLAB
toolboxes SeDuMi and YALMIP [20, 21], are employed to calculate
the optimum weight vector of our robust beamformers.

In the first example, the output SINR versus the input SNR as
well as the sample size are considered. The actual DOAs and polar-
izations of the signals are given as: (θd, γd, ηd) = (5◦, 15◦, 30◦),
(γi,1, ηi,1) = (30◦, 80◦), and (γi,2, ηi,2) = (70◦, 100◦). The norm
of the mismatch error vector ∥e∥ is assumed to have a uniform dis-
tribution in the interval (0, ε], where ε is fixed to 2 in this example.
The results are given in Figs. 2 and 3. We can observe that the pro-
posed methods consistently enjoy the best performance in terms of
robustness and convergence rate, and their superiority is especially
prominent in the case of high SNR values and small sample sizes.
Additionally, the two proposed beamformers have almost the same
performance in this simulation.

In our second example, the output SINR is studied as a function
of the error constraint ε, which is varied from 0.6 to 3. The in-
put SNR and sample size are 0 dB and 200, respectively. The actual
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Fig. 3. Output SINR versus sample size with input SNR = 0 dB.

DOAs and polarizations of signals are kept the same as in the first ex-
ample. The performance of our quaternionic robust adaptive beam-
formers versus ε is shown in Fig. 4. The results demonstrate that
Q-WCCB-1 is better than Q-WCCB-2 for small values of ε. When
the value of ε is greater than about 1.8, Q-WCCB-2 has achieved a
little better performance than Q-WCCB-1. Furthermore, the curves
of Q-WCCB-1 and Q-WCCB-2 both decrease when ε is too large
(greater than about 2.2).
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Fig. 4. Output SINR versus ε.

4. CONCLUSION

Based on the worst-case performance constraint, a novel adaptive
beamforming scheme based on a two-component EM vector-sensor
array has been proposed within the hypercomplex framework, and
two adaptive algorithms are derived accordingly. They consistently
outperform the recently proposed quaternionic adaptive beamformer
Q-Capon as well as the traditional SMI-MVDR beamformer, espe-
cially in the circumstance of high input SNR values and small sam-
ple sizes. Additionally, the two algorithms show a very close perfor-
mance in our numerical simulations.
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