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ABSTRACT

We consider a MIMO radar with arbitrary multi-dimensional
array, and propose a method for transmit array interpolation
that maps an arbitrary transmit array into an array with a cer-
tain desired structure. A properly designed interpolation ma-
trix is used to jointly achieve transmit array interpolation and
design transmit beamforming. The transmit array interpola-
tion problem is cast as a convex optimization problem based
on minmax criterion. Our designs enable to control the side-
lobe levels of the transmit beampattern and enforce different
transmit beams to have rotational invariance with respect to
each other, a property that enables the use of computation-
ally efficient direction finding techniques. It is shown that the
rotational invariance can be achieved independently in both
the elevation and the azimuth spatial domains, allowing for
independent elevation and azimuth direction finding.

Index Terms— Arbitrary arrays, array interpolation, di-
rection finding, MIMO radar, rotational invariance property.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has been re-
cently the focus of intensive research [1]–[6]. It has been
shown that MIMO radar with collocated transmit antennas
suffers from the loss of coherent transmit processing gain as
a result of omnidirectional transmission of orthogonal wave-
forms [6]. The concepts of phased-MIMO radar and transmit
energy focussing have been developed to address the latter
problem [6], [7]. Other transmit beamforming approaches
have been also developed [8]–[13], but all of them address
the case of one dimensional (1D) transmit array. Despite the
great practical interest in two dimensional (2D) transmit ar-
rays [14], the fact that the performance of MIMO radar with
less number of waveforms than the number of transmit anten-
nas and with transmit processing gain is better than the perfor-
mance of MIMO radar with full waveform diversity and with
no transmit beamforming gain [7] becomes more evident in

the case when the transmit array contains a large number of
antennas, e.g., 2D transmit arrays.

In this paper, we consider a MIMO radar with arbitrary
multi-dimensional arrays and develop a method for transmit
array interpolation that maps an arbitrary transmit array into
an array with a certain desired structure, e.g., a uniform rect-
angular array or an array with two perpendicular uniform lin-
ear arrays. A properly designed interpolation matrix is used to
jointly achieve transmit array interpolation and design trans-
mit beamforming. The transmit array interpolation problem
is cast as a convex optimization problem based on the min-
max criterion. Such formulation is flexible and enables apply-
ing constraints on the transmit power distribution across the
array elements, controlling the sidelobe levels of the trans-
mit beampattern, and enforcing different transmit beams to
have rotational invariance with respect to each other, a prop-
erty that enables efficient computationally cheap 2D direction
finding at the receiver. The rotational invariance is achieved
independently in both the elevation and the azimuth spatial
domains, allowing for independent elevation and azimuth di-
rection finding at the receiver using simple 1D techniques.

2. SIGNAL MODEL

Consider a mono-static MIMO radar with transmit and re-
ceive arrays of M and N elements, respectively. Both the
transmit and receive arrays are assumed to be planar arrays
with arbitrary geometries. In a Cartesian two-dimensional
space, the transmit antennas are assumed to be located at
pm , [xm ym]T , m = 1, . . . ,M where (·)T stands for the
transpose operator. The antenna locations are measured in
wavelength. The M × 1 steering vector of the transmit array
is defined as

a(θ, ϕ) =
[
e−j2πµT (θ,ϕ)p1 , . . . , e−j2πµT (θ,ϕ)pM

]T
(1)

where θ and ϕ denote the elevation and azimuth spatial angles,
respectively, and µ(θ, ϕ) = [sin θ cosϕ sin θ sinϕ]T denotes
the propagation vector.

4139978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Let C = [c1, . . . , cM̃ ] be the M × M̃ interpolation ma-
trix, where M̃ ≤ M is the number of elements in the de-
sired interpolated array and cm is the mth column of C. The
relationship between the actual and the interpolated transmit
arrays is given by

CHa(θ, ϕ) ≃ ã(θ, ϕ) θ ∈ Θ, ϕ ∈ Φ (2)

where ã(θ, ϕ) is the M̃×1 steering vector associated with the
desired array, Θ and Φ are predefined sectors in the elevation
and azimuth domains, respectively, and (·)H stands for the
Hermitian transpose. Let s(t) = [s1(t), . . . , sM̃ (t)] be the
M̃ × 1 vector of predesigned independent waveforms which
satisfy the orthogonality condition

∫
T
s(t)sH(t) = IM̃ where

T is the radar pulse duration and IM̃ is the identity matrix
of size M̃ . Each of the orthogonal waveforms is radiated via
one element of the interpolated array. Therefore, the signal
radiated towards a hypothetical spatial location (θ, ϕ) is given
by

s(t, θ, ϕ)= ãT (θ, ϕ)s(t) =
M̃∑
i=1

(
cHi a(θ, ϕ)

)
si(t). (3)

It can be observed from (3) that the radiation pattern of
the power of the ith orthogonal waveform si(t) is given by
|cHi a(θ, ϕ)|2. Therefore, the vector ci can be used to achieve
a desired transit beampattern. In other words, the interpo-
lation matrix C can be properly designed to jointly achieve
transmit array interpolation and transmit beamforming.

Assuming that L targets are present in the far-field of the
array, the N × 1 receive array observation vector can be writ-
ten as

x(t, τ) =
L∑

l=1

βl(τ)
(
ãT (θl, ϕl)s(t)

)
b(θl, ϕl) + z(t, τ) (4)

where t and τ are the fast and slow time indexes respec-
tively, b(θ, ϕ) is the N × 1 steering vector of the receive ar-
ray, βl(τ) is the reflection coefficient associated with the lth
target with variance σ2

β , and z(t, τ) is the N × 1 vector of
zero-mean white Gaussian noise. We assume that the reflec-
tion coefficients obey the Swerling II target model, i.e., they
remain constant within the whole duration of the radar pulse
but change from pulse to pulse. The receive array observation
vector x(t, τ) is matched-filtered to each of the orthogonal
basis waveforms si(t), i = 1, . . . , M̃ , producing the N × 1
virtual data vectors

yi(τ) =

∫
T

x(t, τ)s∗i (t)dt

=

L∑
l=1

βl(τ)
(
cHi a(θl, ϕl)

)
b(θl, ϕl) + zi(τ) (5)

where zi(τ) ,
∫
T
z(t, τ)s∗i (t)dt is the N × 1 noise term

whose covariance is σ2
zIN . Note that zi(τ) and zi′(τ) (i ̸= i′)

are independent due to the orthogonality between si(t) and
si′(t).

It can be observed from (5) that the amplitude of sig-
nal component associated with the lth target in yi(τ), i =
1, . . . , M̃ is amplified by factor cHi a(θl, ϕl). In the following
section, we propose a method for designing the interpolation
matrix C and show how to jointly achieve transmit array in-
terpolation and transmit beamforming. We also show how to
enforce the rotational invariance property at the transmit side
of the MIMO radar.

3. TRANSMIT ARRAY INTERPOLATION

Let θk ∈ Θ, k = 1, . . . ,Kθ be the angular grid chosen (uni-
form or nonuniform) which properly approximates the de-
sired elevation sector Θ by a finite number Kθ of directions.
Similarly, let ϕk ∈ Φ, k = 1, . . . ,Kϕ be the angular grid cho-
sen (uniform or nonuniform) which properly approximates
the desired azimuth sector Φ by a finite number Kϕ of di-
rections. The interpolation matrix C can be computed as the
least squares (LS) solution to

CHA = Ã (6)

where the M ×KθKϕ and the M̃ ×KθKϕ matrices A and
Ã are, respectively, defined as follows

A = [a(θ1, ϕ1), . . . ,a(θKΘ , ϕ1), . . . ,a(θKΘ , ϕKϕ
)] (7)

Ã = [ã(θ1, ϕ1), . . . , ã(θKΘ , ϕ1), . . . , ã(θKΘ , ϕKϕ
)]. (8)

Given that KθKϕ ≥ M , the LS solution to (6) can be given
as [15]

C =
(
AAH

)−1
AÃH . (9)

Unfortunately, the LS solution (9) does not enable controlling
the sidelobe levels of the transmit beampattern. In fact, the
sidelobe levels in this case can be higher than the in-sector
levels. This may result in wasting most of the transmit power
in the out-of-sector areas which can lead to severe degradation
in the MIMO radar performance.

To incorporate robustness against sidelobe levels, we pro-
pose to use the minmax criterion to minimize the difference
between the interpolated array steering vector and the desired
one while keeping the sidelobe level bounded by some con-
stant. Therefore, the interpolation matrix design problem can
be formulated as the following optimization problem

min
C

max
θk,ϕk′

∥∥CHa(θk, ϕk′)− ã(θk, ϕk′)
∥∥ (10)

θk ∈ Θ, k = 1, . . . ,Kθ, ϕk′ ∈ Φ, k′ = 1, . . . ,Kϕ

subject to
∥∥CHa(θn, ϕn′)

∥∥ ≤ γ, (11)
θn ∈ Θ̄, n = 1, . . . , Nθ, ϕn′ ∈ Φ̄, n′ = 1, . . . , Nϕ

where Θ̄ and Φ̄ are the out-of-sector regions in the elevation
and azimuth domains, respectively, θn ∈ Θ̄, n = 1, . . . , Nθ
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and ϕn′ ∈ Φ̄, n′ = 1, . . . , Nϕ are angular grids used to ap-
proximate Θ̄ and Φ̄, respectively, and γ is a positive number
of user choice used to upper-bound the sidelobe level. The op-
timization problem (10)–(11) is convex and can be efficiently
solved using interior-point methods. Choosing γ ≥ γmin,
the problem (10)–(11) is guaranteed to have a feasible and
unique solution (for discussions on how to find γmin, see [16],
[17]). Note that the interpolation achieved by (10)–(11) is per-
formed only in a certain spatial sector. The accuracy of such
approximation depends on the size of sector.

Alternatively, it is possible to minimize the worst-case
out-of-sector sidelobe level while upper-bounding the norm
of the difference between the interpolated array steering vec-
tor and the desired one. This can be formulated as the follow-
ing optimization problem

min
C

max
θn,ϕn′

∥∥CHa(θn, ϕn′)
∥∥ (12)

θn ∈ Θ̄, n = 1, . . . , Nθ, ϕn′ ∈ Φ̄, n′ = 1, . . . , Nϕ

subject to
∥∥CHa(θk, ϕk′)− ã(θk, ϕk′)

∥∥ ≤ ∆ (13)
θk ∈ Θ, k = 1, . . . ,Kθ, ϕk′ ∈ Φ, k′ = 1, . . . ,Kϕ

where ∆ is a positive number of user choice used to control
the deviation of the interpolated array from the desired one.

ESPRIT-based DOA Estimation: The interpolation ma-
trix design formulations given in (10)–(11) and (12)–(13) can
be used to achieve any desired planar array geometry. Here,
we choose the desired array to be two perpendicular linear
subarrays of two elements each; one located along the x-axis
while the other is located along the y-axis. The desired lo-
cations of the elements of the first subarray are [x̃1, 0]

T and
[x̃2, 0]T while the desired locations of the elements of the
second subarray are [0, ỹ1]

T and [0, ỹ2]
T , where x̃1, x̃2, ỹ1,

and ỹ2 are measured in wavelength. We also choose ã(θ, ϕ)
to take the following format

ã(θ, ϕ) =


e−j2πx̃1 sin θ

e−j2πx̃2 sin θ

e−j2πỹ1 sinϕ

e−j2πỹ2 sinϕ

 , θ ∈ Θ, ϕ ∈ Φ. (14)

It is worth noting that the array response of the subarray lo-
cated along the x-axis is chosen to be dependant on the eleva-
tion angle θ and independent on the azimuth angle ϕ. More-
over, the array response of the subarray located along the y-
axis is chosen to be dependant on the the azimuth angle ϕ
and independent on elevation angle θ. This specific choice
enables us to apply ESPRIT at the receive side to the data
associated with the first subarray to estimate the elevation di-
rections of the targets. Also, it enables applying the ESPRIT
to the data associated with the second subarray to estimate
the azimuth directions. In other words, it enables estimating
the elevation and azimuth angles independently using simple
search-free direction finding techniques.

Solving (10)–(11) or (12)–(13) for C, we obtain

CHa(θ, ϕ) ≈ ã(θ, ϕ), θ ∈ Θ, ϕ ∈ Φ. (15)

Substituting (14) and (15) in (5), we obtain

y1(τ) ≈
L∑

l=1

βl(τ)e
−j2πx̃1 sin θlb(θl, ϕl) + z1(τ) (16)

y2(τ) ≈
L∑

l=1

βl(τ)e
−j2πx̃2 sin θlb(θl, ϕl) + z2(τ) (17)

y3(τ) ≈
L∑

l=1

βl(τ)e
−j2πỹ1 sinϕlb(θl, ϕl) + z3(τ) (18)

y4(τ) ≈
L∑

l=1

βl(τ)e
−j2πỹ2 sinϕlb(θl, ϕl) + z4(τ) (19)

Inspecting (16) and (17), it can be observed that y1(τ) and
y2(τ) are related to each other through rotational invari-
ance. The rotational invariance associated with the lth tar-
get is given by ψl = 2π sin θl(x̃2 − x̃1). Therefore, the
ESPRIT algorithm can be used to estimate the phase rota-
tions ψl, l = 1, . . . , L from y1(τ) and y2(τ). Then, the
elevation angles θl, l = 1, . . . , L can be obtained from
ψl, l = 1, . . . , L. Similarly, it can be observed from (18) and
(19) that y3(τ) and y4(τ) are related to each other through
rotational invariance. The rotational invariance associated
with the lth target is given by φl = 2π sin θl(ỹ2− ỹ1). There-
fore, the ESPRIT algorithm can be used to estimate the phase
rotation associated with each target. Then, the azimuth angles
ϕl, l = 1, . . . , L can be obtained from the estimated phase
rotations φl, l = 1, . . . , L.

It is worth noting that for the case L > 1 an extra step is
need to match the estimated elevation and azimuth angles to
each other. One simple way to achieve that is to use ESPRIT
to obtain the rotational invariance between y1(τ) and y3(τ)
and to use it to match the elevation and azimuth estimates.

4. SIMULATION RESULTS

In our simulations, we assume a transmit array of 64 elements
and a receive array of 16 elements. The desired sector is de-
fined by Θ = [30◦, 40◦] and Φ = [95◦, 105◦]. We allow for
a transition zone of width 10◦ at each side of the mainlobe in
the elevation domain and 20◦ at each side of the mainlobe in
the azimuth domain. The remaining areas of the elevation and
azimuth domains are assumed to be a stopband region. The
desired interpolated array is assumed to consist of 4 elements
as given in (14) with x̃1 = ỹ1 = λ/2 and x̃2 = ỹ2 = λ, where
λ is the wavelength.

In the first example we assume that the transmit array is
a non-uniform rectangular array of size 8 × 8 where the x-
position of each row and the y-position of each column is
chosen randomly from the set [0 4λ]. The interpolation ma-
trix C is designed using (12)–(13) where ∆ = 0.1 is used.
To solve the problem (12)–(13) we used CVX, a package for
specifying and solving convex programs [18]. The normal-
ized overall beampattern is shown in Fig. 1. It can be observed
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Fig. 1. Normalized transmit beampattern using an 8× 8 non-
uniform actual transmit array.

from the figure that the transmit power is concentrated in the
desired sector. The left side of Fig. 2 shows the phase rotation
between the first and second elements of the interpolated ar-
ray while the right side of the same figure shows the rotational
invariance between the third and fourth elements of the inter-
polated array. It can be seen from the figure that the phase
rotation between the first and second elements varies versus
the elevation angle and remains constant versus the azimuth
angle. It can also be seen that the phase rotation between the
third and forth elements of the interpolated array varies versus
the azimuth and remains constant versus the elevation angle.

In the second example, we assume that two targets in the
far-field are located at [33◦, 98◦] and [37◦, 101◦], respectively.
We use the interpolation matrix C obtained from the first ex-
ample to radiate four orthogonal waveforms. The total trans-
mit energy is fixed to M . The arbitrary geometry of the re-
ceive array is chosen by selecting the x- and y-components
of the locations of all elements randomly from the set [0 2λ].
The noise term is chosen to be white-Gaussian with unit vari-
ance. The ESPRIT algorithm is used to estimate the eleva-
tion and azimuth angles of the targets. The root mean-square
error (RMSE) of the estimated angles versus the signal-to-
noise ratio (SNR) is shown in Fig. 3. The Cramer-Rao bound
(CRB) is computed numerically and used as a benchmark for
comparison of the estimation as shown in Fig. 3. It can be ob-
served from that figure that the proposed method offers excel-
lent DOA estimation performance at medium and high SNR
regions. The RMSE saturates at low SNR regions because it
is limited by the width of the desired sector.

5. CONCLUSIONS

The problem of MIMO radar with arbitrary multi-dimensional
arrays is considered. A method for transmit array interpola-
tion that maps the arbitrary transmit array into an array with

Fig. 2. Left: Phase rotation between first and second elements
of the interpolated arrays. Right: Phase rotation between third
and forth elements of the interpolated arrays
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Fig. 3. RMSE versus SNR.

a certain desired structure has been proposed. A properly de-
signed interpolation matrix is used to jointly achieve transmit
array interpolation and transmit beamforming. The transmit
array interpolation problem has been cast as an optimiza-
tion problem that can be solved using the minmax criterion.
It enables controlling the sidelobe levels of the transmit
beampattern, and enforcing different transmit beams to have
rotational invariance with respect to each other, a property
that enables the use of computationally efficient direction
finding techniques. Moreover, it has been shown that the ro-
tational invariance can be achieved independently in both the
elevation and the azimuth spatial domains, allowing for inde-
pendent elevation and azimuth direction finding using simple
1D DOA estimation techniques. It has been shown that the
formulated optimization problem is convex and can be solved
efficiently using interior point optimization methods.
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