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ABSTRACT
In this paper, we study the MIMO signal detection problem
using widely separated antennas in Gaussian interference.
The interference is assumed to be colored with unknown
N × N covariance matrix. We derive the Uniformly Most
Powerful Invariant (UMPI) test for this detection problem as
the upper performance bound for invariant tests. Also the
Separating Function Estimation Test (SFET) is derived for
this problem using the Signal and Scatter to Interference Ra-
tio (SIR). Then, based on the eigenvalues expansion of SIR,
we propose a set of orthogonal signals in transmitters which
maximizes the detection probability of UMPI and SFET. Sim-
ulation results show that 1) the performance of our proposed
detector is close to the UMPI bound and 2) the performance
of the optimal invariant bound improves when the transmit-
ters use the proposed set of signals instead of the orthogonal
complex exponential signals.

Index Terms— MIMO signal detection, Gaussian inter-
ference, UMPI, eigenvalues expansion.

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) signal processing
has various applications involving radar, wireless commu-
nication, and cognitive radio [1, 2]. MIMO radar is a type
of multi-static radars, that employs multiple transmit anten-
nas with different waveforms and jointly processes signals
for detection of target and estimation of its parameters [2].
In general, the MIMO radar systems are classified into the
Widely Separated Antennas (WSA) and Co-Located Anten-
nas (CLA) [2, 3]. In WSA MIMO radar, the antennas are
spatially separated at the transmitters and the receivers, such
that the target signals received at the receivers are indepen-
dent [2–4]. The focus of this paper is on the WSA MIMO
radar target detection and signal design.

According to the Neyman-Pearson criterion, the optimal
test provides the maximum probability of detection P

d
while

the false alarm detection P
fa

is limited by a given value. In
many signal detection problems with unknown parameters,

this test may not exist [5]. Hence, in such problems, propos-
ing a suboptimal test is very important. In this paper, we at-
tempt to find the Uniformly Most Powerful Invariant (UMPI)
test and Separating Function Estimation Test (SFET) which
are asymptotically optimal. The UMPI test is the optimal test
between invariant tests [7]. The UMPI test is given by con-
structing the likelihood ratio of the maximal invariant statis-
tic [5]. Unfortunately, the UMPI test cannot often be derived
in many practical problems; instead it can provide an upper
performance bound for the invariant tests such as the Gener-
alized Likelihood Ratio Test (GLRT) and SFET (for example
see [5, 6]).

In [4], a model for the received signals in the WSA MIMO
radar, based on the scattering effects of the electromagnetic
signals, is proposed. A moving target detection problem in
Gaussian interference with unknown variance is investigated
in [2]. The authors of [8] develop a GLRT for moving tar-
get detection in a nonhomogeneous clutter. It is shown that
this GLRT is also a constant false alarm rate (CFAR) detec-
tor. In [9], based on the expectation maximization algorithm,
an estimate of correlationamong the data from different trans-
mitter and receiver pairs is derived. Then the authors use these
estimators to develop a test for target detection. In [10] two
detectors based on the Rao and Wald criterions are derived
for target detection problem in clutter with known covariance
matrix. The authors of [11] present a detector based on time
reversal method, and design transmitted signal to improve the
performance of the test. In [12] the authors have proposed a
GLRT for target detection with unknown covariance matrix
and channel coefficients to improve the detection probability
of the GLRT ; a method for sampling of received signal is also
presented.

In this paper, we derive the UMPI test for target detec-
tion problem in clutter with unknown covariance matrix using
WSA MIMO radar. It is shown that the UMPI test depends
on the scatter and signal to interference ratio (SIR). Hence,
for a given SIR, this test provides the Most Powerful Invari-
ant (MPI) bound. Since in this problem the UMPI test does
not exist, we utilize the SFET using SIR as a suboptimal in-
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variant test. Based on the eigenvalues expansion of SIR, a set
of signals is proposed such that maximizes the MPI bound.

Consider a MIMO radar with K transmit and L receive
antennas. It is shown that the received signal at the lth re-
ceiver from a target located at the ith cell, is

ril(n) =

√
Es

K

K∑
k=1

hi
lksk(nTs) + wi

l(nTs),

where n = 0, · · · , N − 1, wi
l(nTs) is Gaussian interference

term, Es is the total energy of transmit signals, sk(nTs) de-
notes the transmitted signal from the kth transmitter, and hi

lk

denotes the channel coefficients. The samples of the interfer-
ence are zero mean Gaussian with unknown covariance ma-
trix Σww [4]. It is shown that hi

lk’s are identically independent
distribution (i.i.d.) Gaussian random variables which depend
on the field scattering [4].

Assuming ril
∆
= [ril(0), · · · , ril(N − 1)]T and sk

∆
=

[sk(0), · · · , sk(N − 1)]T , the observation ril is a zero mean,
Gaussian random vector with covariance matrix Σi

l = σ2Rss+
Σww, where Σww is the interference covariance matrix, σ2

is variance of hi
lk, Rss =

K∑
k=1

sks
H
k , where the superscript

H denotes the Hermitian operator. Hence, we can rewrite
the MIMO target detection problem using C cells by the
following hypothesis test: H0 : ril ∼ N (0,Σww),

H1 :

{
ril ∼ N (0, σ2Rss +Σww), i = c,
ril ∼ N (0,Σww), i ̸= c,

, (1)

where l = 1, · · · , L, i = 1, · · · , C, and c is the number of
cell under test (CUT).

The rest of the paper is organized as follows. In Section
2 and 3, we derive the UMPI test and the SFET respectively.
Section 4 develops a set of transmitted signals such that it
maximizes the MPI bound. Section 5 concludes the paper.

2. UMPI TEST

The decision problem remains unchanged by the set of trans-
formations Gqu = {gqu : gqu(r

i
l) = Qril} and Gs = {gs :

gs(r
i
l) = cril, c ̸= 0}, where the matrix Q is a N ×N quasi-

unitary matrix with respect to Rss. This matrix must sat-
isfy QRssQ

H = Rss. Since Gqu and Gs are two linear
transformation groups, the distribution of their each element
is Gaussian and also the induced parameter transformation
groups maintain the parameters space under each hypothesis
as follows. Note that the induced group of transformations
remained the unknown parameters space under each hypothe-
sis. The induced parameter transformation groups under each

hypothesis are written as follows

Gqu|H1 = {gqu|gqu,1([σ2,Σww]) = [σ2,QΣwwQ
H ]},

Gqu|H0 = {gqu|gqu,0([0,Σww]) = [0,QΣwwQ
H ]},

Gs|H1 = {gs|gs,1([σ2,Σww]) = [|c|2σ2, |c|2Σww]},
Gs|H0 = {gs|gs,0([0,Σww]) = [0, |c|2Σww]}.

So the hypothesis is invariant under G which is given by the
combination of two groups Gqu and Gs. To derive a MPI
bound, we must determine a maximal invariant statistic for
G. Hence first we must determine a maximal invariant statis-
tic for Gqu. A maximal invariant statistic for Gqu is given
by mqu(rl) =∥ R

−1/2
ss rl ∥2. Using the composition lemma

[7, ch.6 th.2], the maximal invariant statistic with respect to
the composition of two groups Gqu and Gs for the ith cell,

is given by mi =

[
∥R−1/2

ss ri1∥
2

∥R−1/2
ss riL∥2

, · · · , ∥R−1/2
ss riL−1∥

2

∥R−1/2
ss riL∥2

]T
, and

then the maximal invariant statistic for G is given by mT =

[m1T ,m2T , · · · ,mCT
]T . Since ril’s are independent, the

probability density function (pdf) of m is directly given by
the pdf of mi’s. It can be shown that the pdf of mi under
each hypothesis is given by

fmi(mi|Hζ) = Γ(L)
N∑

κ1=1

· · ·
N∑

κL=1

(
Bκ1,ξ · · ·BκL,ξ

λκ1,ξ · · ·λκL,ξ

)
×

×
(

mi
1

λκ1,i
+ · · ·+

mi
L−1

λκL−1,i
+

1

λκL,i

)−L

, (2)

where mi
l is the lth element of mi , ζ = 0, 1 and ξ = 1

if ζ = 1 and i = c and ξ = 0 for the other cases. Γ(·)
is the Gamma function, λκ,ξ is the κth eigenvalue of matrix

R
−1/2
ss (ξσ2Rss + Σww)R

−1/2
ss and Bκ,ξ =

N∏
p=1,p ̸=κ

1

1−
λp,ξ
λκ,i

.

The UMPI test statistic is obtained by constructing the likeli-
hood ratio of m. Constructing the likelihood ratio of maximal
invariant, the UMPI test rejects H0 if the condition (2) is sat-
isfied. In this equation ηUMPI is set to Pfa requirement. Note

that λκ,1 = σ2 + λκ,0, ρκ =
λκ,0

σ2 and Dκ =
N∏

j=1,j ̸=κ

1
ρκ−ρj

.

In fact, ρκ deals with the ratio of interference in the κth di-
mension of interference to scatter and signal effects. Since the
UMPI test given by (2), depends on ρκ’s, the UMPI test does
not exist. Of course, by assuming ρκ to be known, the deci-
sion rule in (2) gives an MPI bound for evaluating the other
invariant detectors.

3. SFET BASED ON SIR

According to the results in the previous subsection, the SIR
vector for this problem is given by SIR = [1/ρ1, · · · , 1/ρN ]T =[

σ2

P1(R
−1/2
s ΣwwR

−1/2
s )

, · · · , σ2

PN (R
−1/2
s ΣwwR

−1/2
s )

]T
, where
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N∑
κ1=1

···
N∑

κL=1
((ρκ1+1)N−1Dκ1 ···(ρκL

+1)N−1DκL)

(
∥R−1/2

ss rc1∥2

(ρκ1+1)∥R−1/2
ss rc

L
∥2

+···+
∥R−1/2

ss rcL−1∥2

(ρκL−1
+1)∥R−1/2

ss rc
L

∥2
+ 1

(ρκL
+1)

)−L

N∑
κ1=1

···
N∑

κL=1
(ρN−1

κ1
Dκ1 ···ρ

N−1
κL

DκL)

(
∥R−1/2

ss rc1∥2

ρκ1∥R−1/2
ss rc

L
∥2

+···+ ∥R−1/2
ss rc1∥2

ρκL−1
∥R−1/2

ss rc
L

∥2
+ 1

ρκL

)−L > ηUMPI

————————————————————————————————————————————————

Pn(·) is the nth eigenvalue of (·). We define the total SIR by
SIRtot

∆
=

∑N
n=1

1
ρn

. This function of unknown parameters is
zero when the parameters belong to H0 and is positive if they
belong to H1 ; hence this function is a Separating Function
(SF) for this problem [13]. An SFET is given by comparing
the estimate of SF by a threshold [13], hence the SFET re-
jects H0 if ŜIRtot > ηSFET , where ηSFET is set to false alarm
requirement. In the following, we provide an estimation of
the unknown parameters to derive the SFET statistic.

Consider Σ′
ww

∆
= Σww

σ2 , then the pdf of observation under
the union of H0 and H1 is given by

f(rc;σ2,Σ′
ww) =

exp
(

−1
σ2

∑L
l=1 r

c
l
H(Rss +Σ′

ww)
−1rcl

)
πNLσ2NL det(Rss +Σ′

ww)
. (3)

Solving ∂f(rc;σ2,Σ′
ww)

∂σ2 = 0 and ∂f(rc;σ2,Σ′
ww)

∂Σ′
ww

= 0, we have

Σ̂′
ww =

N

L

L∑
l=1

rcl r
c
l
H

rcl
H(Rss + Σ̂′

ww)
−1rcl

−Rss, (4)

σ̂2 =
1

NL

L∑
l=1

rcl r
c
l
H

rcl
H(Rss +Σ′

ww)
−1rcl

, (5)

We cannot find Σ̂′
ww and σ̂2 directly, so we propose a recur-

sive method to find a proper solving for (4). Consider the
following recursive method for Σ′

ww and σ2 by

Σ̂′
ww

(k+1)
=

N

L

L∑
l=1

rcl r
c
l
H

rcl
H(Rss + Σ̂′

ww

(k)
)−1rcl

−Rss, (6)

σ̂2
(k)

=
1

NL

L∑
l=1

rcl r
c
l
H

rcl
H(Rss +Σ

′(k)
ww )−1rcl

(7)

where, Σ̂′
ww

(0)
= I. Hence, the statistic of SFET is given by

replacing the estimations of Σww = σ2Σ′
ww and σ2 into the

SF.

4. OPTIMAL SIGNAL DESIGN

We define A
∆
= R

−1/2
ss ΣwwR

−1/2
ss /σ2, the eigenvalues of A

provide the SIR vector. So the total SIR is given by

SIRtot =
1

σ2
trace{R1/2

ss Σ−1
wwR

1/2
ss } =

1

σ2
trace{RssΣ

−1
ww}

We assume that the transmitting energy of each transmitter is
limited to a constant E. Hence, we can describe an optimiza-
tion problem for signal design as bellow:

max
s1,··· ,sK

SIRtot , s.t., sHk′sk =

{
0 , k′ ̸= k,
E , k′ = k.

(8)

Based on this maximization problem, the desired signals max-
imize the total SIR and then maximize the MPI bound. A typ-
ical strategy for solving this problem is based on the Lagrange
coefficients. Thus, we must maximize

L(sk) = SIRtot +
K∑

k=1

µk(s
H
k sk − E)

=
1

σ2
trace{RssΣ

−1
ww}+

K∑
k=1

µk(s
H
k sk − E)

where µk is the kth coefficient of Lagrange method. So the
optimal signals will be given by solving ∂L(sk)

∂sk
= 0, i.e.,

∂L(sk)

∂sk
=

1

σ2

∂trace{RssΣ
−1
ww}

∂sk
+ 2µksk = 0

⇒ 1

σ2
2Σ−1

wwsk + 2µksk = 0. (9)

According to the last equation, Σ−1
wwsk = −σ2µksk, that

means sk must be a eigenvector of Σ−1
ww i.e., sk =

√
Euk,

where uk is the kth eigenvector of Σ−1
ww. Note that this set of

signals is also orthogonal. Now consider the total SIR by

SIRtot =
1

σ2
trace{RssΣ

−1
ww} =

E

σ2

K∑
k=1

uH
k Σ−1

wwuk

=
E

σ2

K∑
k=1

δk, (10)

where δk’s are the eigenvalues of Σ−1
ww. Therefore by choos-

ing the first K δk (from maximum to minimum of eigenvalues
of Σ−1

ww) and their corresponding uk’s, the optimal set of sig-
nals for the MIMO radar is derived such that it maximizes the
invariant detection bound. Note that the covariance matrix is
an unknown matrix and so it must be estimated by reference
cells (i ̸= c), Σ̂ww = 1

C−1

∑C
i=1,r ̸=c r

i
rr

i
r
H .

In the following we simulate the performance of the tests
when the transmitted signals are complex exponential and
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curves of SFET in comparison with MPI
bound for orthogonal narrow bound signals and proposed set
of signals.

compare the results when the proposed set of signals is used.
In the first simulation, we consider sk(n) = ejωkn for n =
0, · · · , N−1 and k = 1, · · · ,K, where ωk = (k−1)∆ω and
∆ω is the two by two increment between the transmitter car-
riers, which assumed ∆ω = 2π/K and in another experience
consider the same MIMO system with the proposed set of
signals. In this simulation we assume that Σww is unknown,
therefore we have calculated Σ̂ww using 120 reference cells,
in derivation of the proposed set of signal. In all simulations,
we consider K = N = 10 and L = 15. Fig.1 depicts Pd

versus Pfa curves for the MPI test and the SFET. It is seen
that the set of proposed signals has a superior performance in
comparison with the orthogonal narrow band MIMO radar.

5. CONCLUSION

In this paper, we derived an MPI bound for the WSA MIMO
radar target detection. Based on the eigenvalues expansion
and MPI derivation, we extended the Signal and Scatter to In-
terference Ratio for a WSA MIMO radar problem and gave
a set of signals such that it maximizes the upper performance
bound for invariant tests. Furthermore, we derived an invari-
ant SFET detector based on a recursive estimation of SIR.
The simulation results showed that the performance of SFET
is close to the MPI bound and it significantly improves when
we use the proposed transmitted signals.
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