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ABSTRACT

The paper derives closed form (nonmatrix) expression for the deter-
ministic Cramér-Rao bound (CRB) for the direction-of-arrival asso-
ciated with a target embedded in a noisy, multipath channel using the
time reversal (TR) MIMO system. By incorporating the TR built-in
adaptive waveform processing feature to reshape the MIMO probing
signals, we prove that the CRBs for the direction of arrival can be
improved in ways not foreseen with the conventional MIMO radars.
A second contribution of the paper is the analytical derivation of the
Angular Resolution Limit (ARL) defined as the minimal separation
between two targets to be separately resolved by the MIMO radar.
At high signal-to-noise ratio, we show that the TR ARL inherits the
properties of the TR CRB and is superior to its conventional coun-
terpart by a factor proportional to the order of the channel multipath.

Index Terms— Time Reversal, MIMO radar, CRB and ARL.

1. INTRODUCTION

Time reversal (TR) utilizes the reciprocity property of wave prop-
agation in a time-invariant medium. TR based methods time re-
verse, energy normalize, and retransmit (mathematically or physi-
cally) a previously recorded backscatter of a probing signal reflected
from the dispersive medium. As the process is repeated, the TR
signal becomes highly focused on the sources (targets) producing
backscatters. This phenomenon is referred to as super-resolution
focusing [1–3], which among other factors depends on the physi-
cal aperture of the transmitter-receiver array and the medium. A
complex medium creates the so-called multipath effect and signifi-
cantly increases the effective aperture of the transmitter-receiver ar-
ray. Indeed, TR harnesses multipathing to enhance focusing reso-
lution beyond the classical diffraction limit. This paper applies TR
to multiple-input/multiple-output (MIMO) radars for improving the
accuracy of the estimation algorithms associated with an aerospace
target. Indeed, several researchers have reported that taking advan-
tage of the super-resolution focusing property of TR improves the
detection accuracy [4, 5] in radars. Previously, we have applied TR
for radar target localization using both single-input/multiple-output
(SIMO) [6, 7] and MIMO radar systems [8–10].

MIMO radar has the ability to transmit multiple and potentially
different probing signals [11]. The resulting waveform diversity
in MIMO radars enables superior performance including improved
target identifiability [12], clutter/interference rejection that includes
fading mitigation [13], and interference suppression [14]. The ad-
vantages of a MIMO radar system with both colocated and widely
separated antenna elements are further investigated in [15] to offer
improved resolution and higher sensitivity towards detecting moving
targets. In this work, we focus on the case of colocated antennas in a
MIMO setup, where the transmit waveforms are adjusted according
to the channel characteristics using TR. The first section of the paper

derives and analyzes closed form (nonmatrix) expressions of the de-
terministic Cramer-Rao bounds (CRB) for the direction of arrival as-
sociated with a target embedded in a medium that is contaminated by
multipath clutter and background noise using the TR/MIMO frame-
work. To assess the accuracy of the estimation of the target param-
eters, the CRB [16] is a universally accepted tool and provides the
optimal accuracy achievable by any unbiased estimator of the target
parameters. What distinguishes the CRB derived in this paper from
the great majority of existing derivations in literature, e.g., [17–22],
is that the TR based MIMO CRBs are formulated in a multipath
environment. By incorporating the TR built-in adaptive waveform
processing feature to design the TR probing signals, our intuition
is that the CRB can be further improved in ways which were not
foreseen with the non-adaptive waveforms (referred to as conven-
tional) MIMO radars. The second section of the paper focuses on the
analytical derivation and analysis of the Angular Resolution Limit
(ARL) [21], which is the minimal separation between two closely
located targets at which they can be resolved separately. Deriving
the ARL of a radar system is a fundamental problem [23] and has
previously been formulated in a clutter free environment [21]. This
paper considers multipath channels. For the simplified case of two
targets and a single interference source, we show that the TR ARL
is lower than the conventional ARL by a factor that depends on the
strength of the multipath at equal Signal-to-Interference-Noise ratio
(SINR). To the best of our knowledge and among all existing litera-
ture on the CRB and ARL surveyed by us, no such contribution has
been made in the context of the ARL for the TR MIMO radars.

The paper is organized as follows. Section 2 defines the nota-
tion and derives the mathematical formulation for the conventional
MIMO system followed by the TR/MIMO system using a noisy 3-
way parallel factor analysis (PARAFAC) model [19, 24]. Section 3
derives the CRBs for the TR MIMO radar, while Section 4 formu-
lates the TR ARL. Results from numerical examples are discussed
in Section 5. Finally, Section 6 concludes the paper.

2. PROBLEM SETUP

Standard MIMO: We consider a colocated MIMO radar system
with an equal number P of transmit and receive antenna elements
monitoring L moving targets modeled as narrowband point-sources
in the far field [11]. The received signal [25] resulting from the k’th,
(0 ≤ k ≤ (K − 1)) transmitted pulse, with K being the number of
pulses in one coherent pulse interval (CPI), is

Rk =
L
∑

l=1

αle
j2πflkaR(ζl)a

T
T (ζl)F+Nk, (1)

where αl and fl denote, respectively, the reflection coefficient and
the normalized Doppler frequency associated with the l’th target.
The target velocity from path l is denoted by vl and the radar pulse
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period by Tp and the wavelength of the propagating wave by λ, then
fl = 2Tpvl/λ. Let Q be the number of samples in each CPI, then the
known P×Q probing signal matrix F is defined by F = [f1 · · · fP ]T
where fi = [Fi(0) · · ·Fi(Q − 1)]T , whereas the P × Q noise ma-
trix for the k’th pulse is denoted by Nk. The transmit and receive
steering vectors are denoted by aT (.) and aR(.) with the i’th ele-
ments of these vectors given by [aT (ζl)]i = exp(j(2π/λ)ζld

T
i ) and

[aR(ζl)]i = exp(j(2π/λ)ζld
R
i ), respectively, where ζl = sin(θl)

considering that the target direction of arrival (DOA) is denoted by
θl. Notations dTi and dRi are the distances between the reference
sensor and the i’th transmission and reception arrays, respectively.
We assume that the transmitted signals are orthogonal, then rela-
tions FFH = F∗FT = QIP hold true. After matched filtering, Eq.
(1) is given as

Yk =
1√
Q
RkF

H =
L∑

l=1

α̃l
︷ ︸︸ ︷
√

Qαl e
j2πflkaR(ζl)a

T
T (ζl) +Vk, (2)

where Vk = 1/
√
Q NkF

H denotes the noise matrix after matched
filtering. Following the CanDecomp/Parafac model [24]

y = [vec(Y0)
T · · · vec(YK−1)

T ]T =
L
∑

l=1

α̃lgl + v, (3)

where gl = a(fl) ⊗ aT (ζl) ⊗ aR(ζl), the Doppler frequency vec-

tor a(fl) = [1 e2jπfl · · · e2jπfl(K−1)]T , and ⊗ denotes the Kro-
necker product. Notation v = [vec(V0)

T · · · vec(VK−1)
T ]T vec-

torizes the noise matrices of K pulses. Let the observation noise
before matched filtering be complex circular Gaussian independent
and identically distributed samples with zero mean and covariance
of σ2

vI. Due to the orthogonality of the probing signals, one can
show that E(vvH) = σ2

vIKP2 [11] with E{.} being the expected
operator. Without loss of generality, we assume that the targets of
interest are the first and the second indices of l (i.e., with l = 1, 2)
and the rest of L− 2 signals are clutter. Then, Eq. (3) is given as

y =

yt
︷ ︸︸ ︷

α̃1g1 + α̃2g2 +

yi
︷ ︸︸ ︷

L
∑

l=3

α̃lgl +v, (4)

where the signal of interest yt from the two targets is deterministic.
In general, the clutter amplitudes α̃l are assumed to be zero-mean
complex circular Gaussian independent random variables. Due to
the orthogonality of the transmitted waveforms and the central limit
theorem, it can be shown that observations y have circular complex
Gaussian distribution with mean yt and covariance Σ̄.
TR MIMO: In TR, the backscatter of the signals are reversed in
time, energy normalized, conjugated, and re-transmitted a second
time into the medium. The transmitted signal RTR

k = ck{R∗
k}P×end:-1:1

where ck is the energy normalization factor for the k’th pulse. Here,
the Matlab notation {end:-1:1} is used for showing the time reversal
operation. Similar to (1), the k’th received signal in the TR stage is

Xk=
L∑

l′=1

αle
j2πfl′kaT (ζl′)a

T
R(ζl′)R

TR
k +Mk = ck

L∑

l′=1

L∑

l=1

α∗
l αl′e

j2π(fl+fl′ )kaT (ζl′)a
T
R(ζl′)a

∗
R(ζl)a

H
T (ζl)F

TR +Wk(5)

where FTR is the same as F∗ except for time reversal. The accumu-
lated observation noise Wk takes both Mk and Nk into account.
Due to the TR focusing property, Eq. (5) is approximated as [1,26].

Xk ≈ ckP
L
∑

l=1

|αl|2ej2π2flkaT (ζl)a
H
T (ζl)F

TR +Wk. (6)

Following the procedure used in conventional matched filtering, we
apply the matched filter to the TR observation given in Eq. (6) by

multiplying with FTRH
. Using the orthogonality of F, it can be

shown that FTRFTRH
= QIp. Using this equality and after matched

filtering of the TR observations (Eq. (6)), we have

Zk =
1√
Q
XkF

TRH
=

L∑

l=1

α̃l
TR

︷ ︸︸ ︷

P
√

Q|αl|2 ckej2π2flkaT (ζl)a
H
T (ζl) +Uk.

Stacking the TR returns of all k, 0 ≤ k ≤ (K − 1) pulses in vector
z = [vec(Z0)

T · · · vec(ZK−1)
T ]T , the TR model is represented as

z =
L∑

l=1

α̃l
TRgTR

l + u, (7)

in which gTR
l = aTR(fl) ⊗ aT (ζl) ⊗ a∗

T (ζl) and aTR(fl) =
[c0 c1e

2jπ2fl · · · cK−1e
2jπ2fl(K−1)]T . Notation u vectorizes all

the noise matrices of K pulses. Following the discussion for the
standard MIMO observations, one can show that TR observations z
is Gaussian with a covariance of Σ̄TR = σ2

uΠ
TR, where ΠTR is a

positive definite matrix and σ2
u is the noise variance.

3. DETERMINISTIC CRB FOR THE TR MIMO RADAR

In this section, we derive the TR CRB expressions assuming that one
target to be present. Rest of the sources are considered as interfer-
ence. Based on Eq. (7), the TR observations become

z =

zt
︷ ︸︸ ︷

α̃1
TRgTR

1 +
L
∑

l=2

α̃l
TRgTR

l + u. (8)

The vector of unknown parameters is Φ = [ΦT
t ΦT

i ]
T , where Φt =

[θ1, v1, α̃
TR
1 ]T are the deterministic parameters of interest. The nui-

sance parameters are Φi = [θ2, · · · , θL, α̃TR
2 , · · · , α̃TR

L ]T , where the
interferences are assumed stationary. We assume that the normaliza-
tion factor is the same for all K pulses (i.e. ck = c for ∀k), which is
taken out from aTR(vl) and considered in the TR attenuation factors.

3.1. Deterministic TR CRB for Gaussian Interference

The deterministic CRB for a Gaussian interference [27] is

JTR−1

=
2
σ2
u
R

{(
∂zt
∂Φt

)H

Σ̄TR−1

(
∂zt
∂Φt

)}

, (9)

where Σ̄TR = σ2
uΠ

TR is the covariance of the clutter plus noise in
the TR phase. Using the three auxiliary vectors

e1 ! ΠTR−1/2

gTR
1 , eθ1 ! ΠTR−1/2

gTR
θ1 , ev1 ! ΠTR−1/2

gTR
v1 ,

where ΠTR−1/2
is the inverse of the square root of ΠTR and gTR

θ1

and gTR
v1 are the partial derivative of gTR

1 with respect to θ1 and v1,
respectively. The closed form expression of the TR CRB for the
direction parameter is given as (Eq. (11) of [19])

CRBTR(θ1)=
1

2C1
TR

||ev1 ||
2

ρ
sin2(Θ), with (10)

ρ = ||eθ1 ||
2||ev1 ||

2 sin2(Θ) sin2(Ω)−
(
({eH

1 Ae1}
||e1||2

)2
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where C1
TR = c2|α̃1

TR|2

σ2
u

and A = (eH
θ1ev1)I− eθ1e

H
v1 . Also, in Eq.

(10), we have introduced two distances as in [19]: dist(Eθ1 , E) =
sin2(Ω) = 1 − (|eH

θ1e1|2/||eθ1 ||
2||e1||2) and dist(Ev1 , E) =

sin2(Θ) = 1 − (|eH
v1e1|2/||ev1 ||2||e1||2) with Ω and Θ, respec-

tively, being the largest canonical angles in [0, π/2] between one-
dimensional linear subspaces Eθ1 = {eθ1}, Ev1 = {ev1}, and the
linear subspace E = {e1}.

3.2. Special Case of a Nonmoving Target with Interference

For a detailed analysis of the TR CRB expression, this section as-
sumes a simplified model consisting of one non-moving target and
one unknown deterministic interference source as follows

z = α̃1
TRgTR

1 + α̃3
TRgTR

3 + u. (11)

Since the second target is denoted by index 2, we represent the inter-
ference as the third source. In order to get a closed form expression
of the CRB, we assume that α̃TR

1 and α̃TR
3 are known. Directions θ1

and θ3 are unknown. The TR CRB of the target’s direction θ1 is

CRBTR
2 (θ1) =

(

jTR
θ1θ1 −

|TR
θ1θ3 |

2

jTR
θ3θ3

)−1

, with (12)

jTR
θiθi = 4CTR(P

4π2 cos2(θi)κ̃T

λ2
+

4π2 cos2(θi)κT

λ2
) i = 1, 3,

jTR
θ1θ3 =

2α̃1
TR∗α̃3

TR

σ2
u

(

{

∂gTR
1

∂θ1

H
∂gTR

3

∂θ3

}

,

with κT =
∑P

i=1 d
T
i and κ̃T =

∑P
i=1(d

T
i )

2. If the target and interfer-
ence directions {ζ1, ζ3} are decoupled, the closed form CRB of ζ1 is

CRBTR
2 (ζ1) =

1
4CTRP 2π2σ2

T

with σ2
T =

4
Pλ2

(

κ̃T − κ2
T

P

)

(13)

being the sample variance of the sensor positions in the transmit ar-
ray and is equal to 4κ̃T /(Pλ2) for centro-symmetric arrays.

Result 1. At equal SINR, the CRB of θ1 based on the TR observa-
tions (Eq. (12)) is less than the CRB of θ1 based on the conventional
MIMO radar in the presence of one interference source.

Proof of Result 1. The CRB of θ1 based on conventional MIMO,
takes exactly the form of Eq. (12) except for a difference in the
coefficient factors. Then, the TR gain defined as the ratio of the
conventional CRB(θ1) to the CRBTR(θ1) is given as

GTR
1I (θ1)!

CRB2(θ1)

CRBTR
2 (θ1)

=
CTR

C
=1+

P 2c2|α̃3|2
∣
∣(|α̃3|2−|α̃1|2)

∣
∣

σ2
u

. (14)

Eq. (14) is based on comparing the ratio of CTR
C under same SINR

for both the conventional and TR observations.

The second factor in Eq. (14) is directly proportional to the TR
normalization factor c and the number of antenna elements P of the
array while holding an inverse relationship with the strength (vari-
ance) of the observation noise. What is however more interesting to
observe is the dependence of the TR gain in the second factor on the
attenuations associated with the target and the interference source.
Term |α̃3|2|(|α̃3|2 − |α̃1|2| maximizes when |α̃3|2 = 0.5|α̃1|2 with
a value approaching 0 when |α̃3| = 0 and |α̃1| = |α̃3|. It is obvi-
ous that the multipath factor should disappear in such a case. When
|α̃1| = |α̃3|, both the target and the interference have equal atten-
uation factors. In such a case, it is not possible to differentiate the
target and interference responses.

4. ARL FOR THE TR MIMO RADAR

In this section, we derive and analyze the TR ARL for both clutter-
free and a single interference source models. In terms of the earlier
notation, the ARL is defined as δ = ζ2 − ζ1.

4.1. TR ARL with No Interference

With no interference, Eq. (7) can be represented as

z =

zt
︷ ︸︸ ︷

α̃1
TRgTR

1 + α̃2
TRgTR

2 +u. (15)

Then, the TR ARL is the solution to the Smith’s equation [21], i.e.,

δ = η
√

CRBTR
2t (δ) (the probabilities of detection and false alarm

are selected such that η = 1), where CRBTR
2t (δ) is the TR CRB

associated with model (15). The closed from solution of the ARL
involves the analytic inversion of the FIM which is difficult to derive.
Instead, we use a partially known radar model [28] to derive the
CRB. In this model, it is assumed that both velocity v2 and direction
ζ2 of the second target are known. Then, the vector of unknown
parameter Φ̃t = [ζ1 v1 α

TR
1 αTR

2 ]T . Consequently, the CRB of Φ̃t is

CRBTR
2t (ζ1)= J̃TR−1

where J̃TR−1

=
2
σ2
u
R

{
(

∂zt

∂Φ̃t

)H(
∂zt

∂Φ̃t

)
}

.

As ζ2 is known and the CRB is the lower bound of an unbiased
estimator, then CRBTR

2t (δ) = CRBTR
2t (ζ1). Since the TR observations

(Eq. (15)) follow the 3-way noisy PARAFAC model [24], we use the
results presented in Eq. (45) of [19] to derive CRBTR

2t (ζ1) as

CRBTR
2t (ζ1) ! CRBTR

1 (ζ1) +
σ2
u

2P 2K
hTR(δ), (16)

where CRBTR
1 (ζ1) is the lower bound when there is one target and

no interference and hTR(δ) takes care of all the elements of the CRB
which are a function of the ARL. For a nonmoving radar, centro-
symmetric arrays, and high SNR, hTR(δ) is given as [19]

hTR(δ) =
4|α̃TR

1 |2

σ4
u

(CRBTR
1 (ζ1))

2|gTRH

ζ1 gTR
2 |2 (17)

where gTRH

ζ1 gTR
2 = 2pTR(δ)({p̃TR

T (δ)pTR
T (δ)}, (18)

and the following notations are used based on the first-order Taylor
series expansion in a neighborhood of δ = 0:

pTR
T (δ)=aT

T (ζ1)a
∗
T (ζ2) ) P − j(2π/λ)κT δ, (19)

p̃TR
T (δ)=

(
∂aT (ζ1)

∂ζ1

)H

aT (ζ2) ) (4π2/λ2)κ̃T δ − (2jπ/λ)κT

pTR(δ)=aTRH

(v1)a
TR(v2) =

K−1∑

k=0

c2ke
j8πTp/λ(v2−v1)k.

Assuming centro-symmetric arrays (κT = 0) and after simplifying,
the magnitude square of the modulus term in (17) is expressed as

|gTRH

ζ1 gTR
2 |2 = 4c2P 4π4|sTR|2σ4

T δ
2, (20)

where pTR(δ) = c2sTR. Using the Smith’s criterion δ =
√

CRBTR
2t (ζ1)

and using Eq. (16), the TR ARL expression is given as

δ =

√

CRBTR
1 (ζ1)

1− [(8P 2π4|sTR|2σ4
T /K)(CTR)(CRBTR

1 (ζ1))2]
. (21)

Substituting the lower bound in the absence of clutter in Eq. (21) and

assuming high SNR, the TR ARL will be simplified to
√

CRBTR
1 (ζ1).

Consequently, the TR ARL has the same properties as TR CRB.
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Fig. 1. TR CRB gain as function of interference and noise.

4.2. TR ARL of Nonmoving Targets with Interference

Assume a model based on two targets and one interference source.
The unknown parameters are ζ1, ζ3 and α̃2. Rest of the parameters
are assumed known. The FIM for the unknown parameters is

JTR =
2
σ2
u

[

JTR
ζ B(δ)

BT (δ) P 2,

]

(22)

where JTR
ζ is the FIM derived in Section 3.2 for one target and one

interference; unknown parameters ζ1=sin(θ1) and ζ3=sin(θ3); and

B(δ) =

[

jTR
ζ1α̃2

jTR
ζ3α̃2

]

=

[

({α̃1
∗(∂g1/∂ζ1)

Hg2}
({α̃3

∗(∂g3/∂ζ3)
Hg2}

]

. (23)

Using the Schur complement inverse of JTR, the TR CRB of ζ1 is

CRBTR
3 (ζ1) = CRBTR

2 (ζ1) +
σ2
u

2P 2
hTR
2 (δ), (24)

where hTR
2 (δ) =

[

JTR−1

ζ B(δ)BT (δ)JTR−1

ζ

]

11
. (25)

In Eq. (24), the TR CRB of ζ1 based on one target and one interfer-
ence is denoted by CRBTR

2 (ζ1) and that of the two targets and one
interference source is denoted by CRBTR

3 (ζ1). Defining notations
CTR
1 = c2|α̃TR

1 |2/σ2
u and CTR

3 = c2|α̃TR
3 |2/σ2

u, Eq. (25) simplifies to

hTR
2 (δ) = (26)
(√

2CTR
1

σu
CRBTR

2 (ζ1)|gTRH

ζ1 gTR
2 |+

√

2CTR
3

σu
CRBTR

2 (ζ1, ζ3)|gTRH

ζ3 gTR
2 |
)2

.

Note that |gTRH

ζ1 gTR
2 | = (2π2σ2

TP
2)δ. Rearrange terms in (24) as

(CTR
1 4π2σ4

TP
2CRBTR

2 (ζ1)− 1)δ2+ (27)

(4
√

CTR
1 CTR

3 π2σ2
Tγ)δ + CRBTR

2 (ζ1) +
CTR
3

P 2
CRBTR

2 (ζ1, ζ3)γ
2 = 0,

where γ = |gTRH

ζ3 gTR
2 |. The ARL δ is the solution of the above poly-

nomial. In order to compare the TR ARL with the conventional one,
we assume that the target direction ζ1 and the interference direction
ζ3 are decoupled. Therefore, the second term in hTR

2 reduces to zero.

Result 2. At equal SINR and with one interference, the TR ARL is
less than the ARL based on the conventional MIMO radar.

Proof of Result 2. Using Eq. (24) and based on the fact that hTR
2 =

(2CTR
1 /σ2

u)(4π
4σ4

TP
4)CRBTR2

2 (ζ1)δ
2, the TR ARL is given by

δ =

√

CRBTR
2 (ζ1)

1− [(4P 2π4σ4
T )(CTR)(CRBTR

2 (ζ1))2]
. (28)

−20 −15 −10 −5 0 5 10
10−4

10−3

10−2

10−1

100

101

SINR (dB)
 

 

ARL
TR ARL

Fig. 2. ARLs for conventional and TR MIMO arrays.

Substituting the expression of CRBTR
2 (ζ1) from (13), the TR ARL in

presence of one interference source is given as

δ =

√

1
π2σ2

T (4CTRP 2 − 1)
. (29)

At high SNR, CTRP 2 * 1 and the ARL simplifies to
√

CRBTR
2 (ζ1).

Based on Result 1, the ratio of the conventional ARL to the TR ARL
is
√

GTR
1I (ζ1) which is greater than one. Therefore, the TR ARL is

always less than the conventional ARL at equal SINR.

5. NUMERICAL ILLUSTRATION

This section demonstrates the potential performance gain of the
TR/MIMO framework by numerical examples. One colocated
Uniform Linear Arrays (ULA) with 10 antenna elements and half-
wavelength inter-element spacing is used as transmit and receive
arrays. The targets are located at ζ1 = sin(π/6) = 0.5 and at
ζ2 = 0.51 with respect to the broadside of the array. The di-
rection of arrival associated with the interference source is set to
ζ3 = sin(π/4). The attenuation factors for the two targets and
one interference source are set to [0.8, 0.8, 0.4]T , respectively. At-
tenuations are assumed to be real to simplify the matrix inversion
operation needed to derive the CRBs. In Fig. 1, we plot the TR gain
for the direction of arrival θ1 as given in Result 1 for a fixed direct
path attenuation of |α̃1| = 0.8 and different values of |α̃3| = β|α̃1|
for (0 < β ≤ 1). The variance of noise in TR stage (i.e. σ2

u) is var-
ied and the TR gain is plotted for different noise variances. As shown
in this figure, the gain is maximum for β = 1√

2
or |α̃1|2 = 2|α̃3|2,

which is in agreement with Result 1. Fig. 2 plots the ARL obtained
for the conventional and TR/MIMO systems at the same SINRs set
for β = 0.5. As shown in this figure, the TR/MIMO offers lower
ARL in a one interference source model. For a fair comparison, we
keep the same SINRs for both the conventional and TR frameworks.

6. SUMMARY

The paper derives and analyzes closed form expressions for the
TR/MIMO CRBs of the direction of arrival associated with a target
embedded in a multipath environment corrupted with noise. Our
derivations in a 2-path environment reveals that using TR, the CRBs
for direction can be improved over the conventional MIMO systems.
Finally, the TR ARL is derived for both environments with and
without clutter. At high SNR and equal SINR, the TR ARL is shown
to be lower than that for the convectional ARL.
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