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ABSTRACT

A spatial coding of the transmitted waveforms in a distributed

MIMO radar system is proposed for reducing the impact of

noise and interference on the channel matrix estimate. The

channel matrix is needed in target parameter estimation as

well as transmitter resource allocation and target recognition,

for example. It is shown that when noise or interference are

correlated after filtering at the receiver, it is possible decrease

the error of the channel coefficient estimates by using the pro-

posed coding method. Numerical results shown here demon-

strate the benefits of the method in practical scenarios.

Index Terms— MIMO radar, spatial coding, channel es-

timation, interference suppression

1. INTRODUCTION

In a distributed MIMO radar system, multiple transmitters

and receivers are positioned over a wide area so that targets

can be seen simultaneously from several different angles[1].

Estimating the coefficients of scattering for a target is a neces-

sary step in several key tasks of MIMO radar including target

velocity estimation with pulse-Doppler radar[2], beamform-

ing for a distributed MIMO radar[3, 4], and resource alloca-

tion for target tracking[4] as well as optimizing the use of the

waveform diversity in the radar transmitter. The scattering

coefficient estimation is equal to estimating the instantaneous

channel matrix of the radar system after factoring in the trans-

mit power and the propagation losses. Naturally, the estima-

tion accuracy is limited by the signal power and interference

plus noise power at the receiver. Furthermore, it also depends

on how fast the RCS varies in time compared to the integra-

tion time.

Typically, noise and interference cancellation methods

rely on having two correlated measurements of the noise and

interferecene one of which is signal-free[5]. In a distributed

MIMO radar system, obtaining a signal-free measurement

requires turning the transmitter off. Unless the interference
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has a very long correlation time, the measurements obtained

while not transmitting are no longer useful for noise and inter-

ference cancellation after the transmitter has been turned on

again. On the other hand, temporal filtering methods relying

on the second-order statistics of the noise plus interference

also affect the received waveforms. Therefore, we propose a

spatial coding method to mitigate the noise and interference

based on their second-order statistics. If the second-order

statistics do not change considerably after the noise and in-

terference measurements have been obtained while not trans-

mitting, it is shown that the proposed spatial coding approach

can be used to reduce the estimation error of the channel

matrix, and consequently, improve the performance in target

parameter estimation.

Space-time coding for MIMO radar has been previously

proposed in [6] and [7], but for the purpose of obtaining uni-

tary waveforms in a colocated MIMO radar. Space-time cod-

ing was used in [8] to reduce the waveform cross-correlation.

Altough this reduces the channel coefficient error, it does not

mitigate the interference. In [9], space-time coding was used

to reduce clutter in colocated MIMO radar. The space-time

coding was also studied in [10–13] in the context of opti-

mizing the number of linearly independent transmitted wave-

forms for detection and ranging. The interference mitigation

method proposed in this paper is a novel application of spatial

coding.

This paper is organized as follows: Section 2 discusses

the signal model. The coding method for improved channel

estimation is presented in Section 3, and numerical results

are provided in Section 4. Finally, conclusions are drawn in

Section 5.

2. SIGNAL MODEL

We consider a distributed MIMO radar system withM trans-

mitters and N receivers. The signal transmitted by the m-th

transmitter and received by the n-th receiver can be written in

baseband as

rnm(t) =
√

Pnmcnmsm(t − τt,m − τr,n)

×ej2πfnmte−j2πfc(τt,m+τr,n) + νn(t),
(1)
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where Pnm is a power parameter, cnm the scattering coeffi-

cient, sm the signal transmitted by the m-th transmitter, τt,m

the time delay from the transmitter to the target, τr,n the time

delay from the the target to the receiver, fnm the Doppler

shift, fc the carrier frequency, and νn is the noise and in-

terference term. The power parameter Pnm depends on the

transmit power, propagation losses, and the antenna gain at

the receiver. Any unknown oscillator phase terms can be in-

cluded into cnm.

We assume that the transmitted waveforms sm have suffi-

ciently low cross-correlation and autocorrelation sidelobe val-

ues so that the delays τt,m and τr,n as well as the Doppler

shifts fnm can be estimated and compensated for so that the

received signal can be written in a N × 1 vector

r(t) = Hs(t) + ν̃(t), (2)

where H is the N × M channel matrix and ν̃(t) is the
frequency-shifted and time-shifted interference plus noise

vector. Performing matched filtering, the signal becomes

∫

r(t)sH(t)dt ≈ H + V, (3)

where V =
∫

ν̃(t)sH(t)dt is the filtered noise plus inter-

ference matrix. It was assumed that the waveforms are ap-

proximately orthogonal. It is shown in Section 4 that the

waveforms do not have to be perfectly orthogonal in order

to use the proposed coding method and consequently reduce

the channel estimation error.

3. IMPROVED CHANNEL ESTIMATION

It can be seen in (3) that the matched filter output provides an

estimate of the N × M channel matrix corrupted by filtered

noise and interference, i.e.

Ĥ =

∫

r(t)sH(t). (4)

The mean-square error of the channel matrix estimate is

E
[

‖Ĥ− H‖2
F

]

≈ E
[

‖V‖2
F

]

, (5)

where ‖ · ‖F denotes the Frobenius norm.

If temporal filtering was used to mitigate the interfer-

ence before the matched filtering, the channel matrix estimate

would also be affected. Therefore, we apply instantaneus

spatial precoding W to the transmitted waveforms so that

the transmitted signal isWs(t). The matched filter output is
multiplied from the left byW−1 to decode the signal at the

receiver side. Thus, the coding matrix has to be of full rank.

Averaging or any other temporal filtering operations that are

done after the matched filtering can be also used with this

coding approach.

Assuming approximate orthogonality of the transmitted

waveforms, the channel matrix estimate becomes

Ĥ = HW

∫

s(t)sH(t)dtW−1 +

∫

ν̃(t)sH(t)dtW−1

≈ H + VW−1

(6)

after the decoding. Thus, we may define an error criterion

E(W) = E
[

‖VW−1‖2
F

]

(7)

and search for a coding matrixW that would minimize this

error.

Using the definition ofV, one obtains

E(W)

= tr
(

W−HE[VHV]W−1
)

= tr
(

W−HE

[
∫

s(t)ν̃H(t)dt

∫

ν̃(t′)sH(t′)dt′
]

W−1
)

= tr
(

W−H

∫ ∫

s(t)E
[

ν̃
H(t)ν̃(t′)

]

sH(t′)dtdt′W−1
)

= tr
(

W−HAW−1
)

(8)

where tr denotes the trace of a matrix. In practice, one would
need to estimate the matrixA as

Â =
1

Ns

Ns
∑

n=1

∫

s(t)ν̃H
n (t)dt

∫

ν̃n(t′)sH(t′)dt′, (9)

whereNs is the number of noise plus interference sample se-

quences available.

In order not to change the total transmit power, we need to

place a constraint on ‖W‖2
F = tr

(

WHW
)

. Without loss of

generality, we assume the total power to be equal to the num-

ber of transmittersM . Thus, we need to solve a constrained

optimization problem

min
W

tr
(

W−HAW−1
)

s.t. tr
(

WHW
)

= M. (10)

This problem can be solved using the method of Lagrange

multipliers. The Lagrangian of the problem can be written as

L(W, λ)

= tr
(

W−HAW−1
)

− λ
[

tr
(

W−HW−1
)

− M
]

.
(11)

In order to obtain a critical point, it can be shown that this

function can be differentiated with respect toW∗ while treat-

ing W∗ and W as independent variables to get the gradi-

ent[14]. The result is

∂L

∂W∗
= −W−H(AW−1)W−H + λW. (12)
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Setting this equal to zero and multiplying from the left by

W−1 results in

W−1W−HAW−1W−H = λI, (13)

which is a form of a bi-quadratic matrix equation. Assuming

that λ is nonzero, we can substitute Q = λ−1/2W−1W−H

to obtain

QAQ = I. (14)

Since A is Hermitian by definition, Q can be found easily

using eigenvalue decomposition. Letting the eigenvalue de-

composition beA = UDUH , we get

Q = UD−1/2UH (15)

and then the optimal precoding matrix is given by

Wo = (λ1/2Q)−1/2 = λ−1/4UD1/4UH (16)

Substituting the result into the constraint equation yields

λ =

[

1

M
tr

(

D1/2
)

]2

. (17)

The solution is thus valid whenA is invertible.

We need to still show that the critical point of the La-

grangian actually reduces the error, i.e. tr
(

W−H
o AW−1

o

)

≤

tr
(

A
)

, which can be simplified to

1

M

[

tr
(

D1/2
)

]2

≤ tr
(

D
)

. (18)

Using Cauchy-Schwarz inequality, one obtains

(

M
∑

m=1

1 d1/2
mm

)2

≤
(

M
∑

m=1

1
)(

M
∑

m=1

dmm

)

, (19)

where dmm is the mth element on the diagonal of D. This

proves (18).

The channel estimation method then proceeds as follows:

Algorithm

1. Obtain noise and interference only measurements

ν while transmitters are off

2. Detect a target and estimate time delays τt,m τr,n

and the Doppler shifts fnm

3. Use the previously obtained measurements to

form ν̃, thenV and finally an estimate ofA using

(9)

4. Transmit with the optimal precodingWo in (16)

and then estimate the channel matrix using (6)

It should be noted that the error criterion can be easily

generalized for multiple targets as

E(W) = E
[

∥

∥

∑

k

VkW
−1

∥

∥

2

F

]

= tr

(

W−H
∑

k

E[VH
k Vk]W−1

)

.

(20)

Table 1. Difference to the baseline SNR in dB for each Tx–

Rx branch in the example.

Tx 1 Tx 2 Tx 3

Rx 1 0 2.5458 −0.0819
Rx 2 −6.3071 −0.3703 6.4488
Rx 3 −4.0808 −5.6728 −0.2927
Rx 4 −0.7801 8.1298 6.9045
Rx 5 1.2571 8.1779 5.9750

The filtered noise and interferenceVk depends on the target

as the shifts needed to get the signal in the form of (2) can be

different depending on the target.

4. NUMERICAL EXAMPLES

A numerical example demonstrating the use of the proposed

spatial coding scheme to reduce the channel matrix estimation

error is shown in this section. This example uses the signal

model for the matched filter output developed in Section 2

the spatial coding matrix derived in Section 3 in estimating

the channel matrix of a single target.

In this example, a widely distributedMIMO radar systems

consists of three transmitters located at (0, 0), (500, 500),
and (700, 2000), and five receivers at (−500, 159), (0, 0),
(620, 0), (700, 2998), and (707, 1450). The target is at
(−2000, 3000) and moving at a velocity (20,−20).

All the transmitters use 0.5 GHz carrier frequency. The

polyphase sequences proposed in [15] were used as the wave-

forms. The first three sequences of the set with parameters

m = 1, n = 3, and p = 1 as defined in [15] and lenght
of 61 were used. These sequences have a normalized peak

cross-correlation of 0.1765 and autocorrelation peak sidelobe

of 0.1721. The sequences were transmitted at 106 chips per

second.

Path losses for the transmitted waveforms were equal to

the free-space propagation loss. The scattering coefficients

were assumed to be circular complex Gaussians held constant

throughout the estimation process. Receiver noise was as-

sumed to be spatially and temporally white i.i.d. complex

Gaussian, but since the waveforms are not perfectly orthogo-

nal, the noise is correlated after the matched filtering. The Tx

1 – Rx 1 pair was chosen as the baseline SNR level. Differ-

ences to this baseline level for each received signal are shown

in Table 1.

First, 100 samples of interference plus noise were ob-

served. These were then used to estimate the matrix A for

the target whose position and Doppler shifts were assumed

to have been correctly estimated. The channel matrixH was

then estimated and the normalized MSE defined as

NMSE =
1

K

K
∑

k=1

‖Ĥk − H‖2
F

‖H‖2
F

(21)
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Table 2. The normalized MSE of the channel matrix esti-

mation for different baseline SNR values with noise only.

The proposed coding method decreases the estimation error

in each case.
X

X
X

X
X

X
X

X
X
X

Method

SNR
0 dB 5 dB 15 dB

Normal 0.0236 0.0190 0.0171
Coded 0.0178 0.0132 0.0112

was averaged over 1000 independent runs. The reason for

using the normalized MSE is that it depends on SNR but

not the actual power levels. For example, if both the sig-

nal power plus noise and iterference powers are doubled, the

MSE quadruples while the NMSE remains unchanged. It is

also easily seen that the coding matrix Wo that is optimal

with respect to the MSE channel estimation error results also

in the lowest NMSE.

The results for different SNR values are shown in Table

2. It can be seen that the proposed spatial coding decreases

the normalized MSE channel matrix estimate at all the tested

SNR values.

The performance of the coding scheme was then tested

with a jammer present at (−922, 2216.6). The jamming sig-
nal was assumed to be colored Gaussian noise with a auto-

correlation function a(k) = 8 − |k|, k = −8,−7, . . . , 7, 8.
Taking the path loss into account, the power of the jamming

signal compared to the jammer to noise ratio (JNR) baseline

at each receiver was 0, -1.1606, -2.1818, 1.3387, and 1.3389

dB. The JNR was then varied form -10 dB to 15 dB to test the

performance of the proposed method under different levels of

jamming. Moreover, the normal transmission mode and the

proposed spatial coding scheme were compared to a theoret-

ical case where the covariance of the noise plus interference

remains unchanged but the used waveforms are orthogonal so

the MSE is given by tr(W−HAW−1). The coding matrix
W was formed using the estimate Â also in this case.

The NMSE of the channel coefficient estimates in the

presence of jamming are shown in Fig.1. It can be seen that

the spatial coding method reduces the estimation error even

when there is a strong interfering signal present. However,

the estimation error is not as low as in the theoretical case

of orthogonal waveforms. The difference in performance is

especially significant for high SNR regime. This shows that

the cross-correlation of the used waveforms deteriorates the

channel matrix estimation substantially.

The decrease in the normalizedMSE as the JNR increases

towards zero is likely caused by estimation error inA. When

the jamming signal is slightly weaker than noise, it is difficult

to estimate the eigenvalues and eigenvectors of Â correctly,

but the jamming is still strong enough to cause error in the

estimation. When the JNR is increased, the NMSE initially

decreases as the eigenvalues and eigenvectors are less affected

by noise.
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Fig. 1. Normalized mean square error of the channel ma-

trix estimate at different JNR levels. Normal stands for di-

rect transmission of the waveforms and coded means the pro-

posed spatial coding method, whereas coded orthogonal cor-

responds to the theoretical case of orthogonal waveforms.

The proposed method can improve the estimate also in the

presence of jamming. The estimation error would be much

lower with orthogonal waveforms, so a large part of the esti-

mation error is caused by the waveform cross-correlation.

5. CONCLUSIONS

Estimation of the channel matrix is a necessary task in many

applications of ditributed MIMO radar, including target pa-

rameter estimation, transmitter resource allocation and target

recognition. We have proposed a spatial precoding scheme

that reduces the channel matrix estimation error when noise

plus interference is correlated after matched filtering. The

correlation may be the property of the interference itself or

result of using matched filtering of waveforms not exactly

orthogonal. The optimal precoding matrix can be obtained

using second order statistics of the interference plus noise

and eigenvalue decomposition making the proposed approach

computationally efficient. The proposed method was seen in

the examples to reduce the channel estimation error for a wide

range of interference power. However, the cross-correlation

of the transmitted waveforms limits the performance signif-

icantly. Channel matrix estimation methods for correlated

waveforms in should be developed in future work.
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