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ABSTRACT

We study compressive sensing in the spatial domain for target local-
ization in terms of direction of arrival (DOA), using multiple-input
multiple-output (MIMO) radar. A sparse localization framework is
proposed for a MIMO array in which transmit/receive elements are
placed at random. This allows to dramatically reduce the number
of elements, while still attaining performance comparable to that
of a filled (Nyquist) array. Leveraging properties of a (structured)
random measurement matrix, we develop a novel bound on the co-
herence of the measurement matrix, and we obtain conditions under
which the measurement matrix satisfies the so-called isotropy prop-
erty. The coherence and isotropy concepts are used to establish re-
spectively uniform and non-uniform recovery guarantees for target
localization using spatial compressive sensing. In particular, non-
uniform recovery is guaranteed if the number of degrees of freedom
(the product of the number of transmit and receive elements )
scales with (log)

2, where is the number of targets, and  is
proportional to the array aperture and determines the angle resolu-
tion. The significance of the logarithmic dependence in is that the
proposed framework enables high resolution with a small number of
MIMO radar elements. This is in contrast with a filled virtual MIMO
array where the product scales linearly with .

Index Terms— Compressive sensing, MIMO radar, random ar-
rays, direction of arrival estimation.

1. INTRODUCTION

It is well known in array signal processing [1] that resolution im-
proves by increasing the array aperture. A non-ambiguous uniform
linear array (ULA) must have its elements spaced at intervals no lar-
ger than 2, where  is the signal wavelength. For a MIMO radar
[2], unambiguous direction finding of targets is possible if,  re-
ceive elements are spaced 2 and transmit elements are spaced
2, a configuration known as virtual array. In compressive sens-
ing parlance, the 2-spaced array and the MIMO virtual array per-
form spatial sampling at Nyquist rate. The main disadvantage of this
Nyquist setup is that the array aperture, and thus resolution, scales
only linearly with , i.e., the degrees of freedom of the system.
In contrast to previous literature on compressive sensing applied to
arrays [3] and MIMO radar [4], which discussed the ULA setup, in
this work, we are interested in a random array MIMO radar. The
goal of spatial compressive sensing, i.e., when spatial sampling is
applied at sub-Nyquist rates, is to achieve the same resolution as the
filled arrays, but using a significantly reduced number of sensors.

Random array theory can be traced back to the work in [5],
where it was shown that, as the number of sensors of an array is
increased, the random array beampattern converges to its average.

This work was extended to MIMO radar in [6]. While random array
theory has been known for a long time, two fundamental questions
were left pending: How many sensors are needed for localization
as a function of the number of targets, and which method should be
used for localization?

The advent of compressed sensing addresses the heart of these
questions. In the radar setting, we define a grid of possible target
locations, and each column of the matrix A is the “virtual array”
steering vector pointing towards one of the grid points. In this setup,
the measurements comply with y = Ax. The unknown signal x en-
codes information about targets locations and gains, and it is sparse,
i.e., it has only non-zero elements out of (with ¿ ).

Compressive sensing theory [7] shows that the unknown sparse
signal x can be recovered with high probability by solving a con-
vex problem, whenever the measurement matrixA satisfies specific
properties. There are two kind of recovery guarantees: uniform and
non-uniform. Uniform guarantees capture the recovery of the worst-
case -sparse signal for a fixed instantiation of the random meas-
urement matrix A. An important parameter used to obtain uniform
recovery guarantee is the coherence, defined as the maximum inner
product between normalized columns of the matrix A. Despite its
widespread use, it is well known that a uniform guarantee based on
coherence requires the number of measurements to scale quadratic-
ally with the number of non-zero elements. A more advantageous
scaling, e.g. linear, in the sparsity , can be obtained if we ask for
non-uniform recovery, which captures the typical recovery behavior
of the random measurement matrixA.

Recent work has shown that, for a sufficient number of in-
dependent and identically distributed (i.i.d.) compressive sensing
measurements, a non-uniform recovery can be guaranteed if a spe-
cific property of the random sensing matrixA, called isotropy, holds
[8]. This result has been extended in [9] to non-isotropic measure-
ments. Unfortunately, these results cannot be directly used in our
localization framework because the MIMO radar  measure-
ments (rows of A) are not i.i.d., as they conform to the structure
of the MIMO random array steering vector. This problem has been
addressed in [10], where a non-uniform guarantee is provided for
a MIMO radar system with  transceivers. The authors obtain
a non-uniform guarantee for a number of measurements propor-
tional to (log)

2 and when a so-called aperture condition holds.
Interestingly, this condition is equivalent to the isotropy condition.

In the present work we provide a novel bound on the coherence
of the matrix A, and we determine under which conditions the iso-
tropy property holds for MIMO random array radar. Leveraging
these results, we develop both uniform and non-uniform recovery
guarantees for target localization for MIMO radar systems. In de-
tail, we show that uniform recovery requires the degrees of free-
dom  to be proportional to 2 (log+ log (log))

2, while,
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non-uniform recovery requires to scale with  (log)
2. The

proposed random array framework is of practical interest to airborne
and other radar applications, where the spacing between antenna ele-
ments may vary, or where exact surveying of sensor location is not
practical due to natural �exing of the structures involved.

The following notation is used: boldface denotes matrices (up-
percase) and vectors (lowercase); for a vector a, a denotes its -
th element, while for a matrix A, A ( ) denotes the element at
-th row and -th column, and A ( :) denotes the -th row; (·)∗,
(·) , (·) , and (·)† denote the complex conjugate, the transpose,
the Hermitian-transpose and the pseudo-inverse operators, respect-
ively. E denotes expectation and we define  () , E [exp ()]
as the characteristic function of the random variable . The symbol
“⊗” denotes the Kronecker product and x ∼ CN (C)means that
x has a circular symmetric complex normal distribution with mean
 and covariance matrixC.

2. PROBLEM FORMULATION

Wemodel aMIMO radar system (see Fig. 1) in which sensors col-
lect a coded pulse sent by transmitters and returned from sta-
tionary targets. We assume that transmitters and receivers each form
(possibly overlapping) linear arrays of apertures  and  , re-
spectively. Define  ,  +  and let the -th transmit-
ter be at position 2 on the -axis, while the -th receiver

be at position 2 (with  ∈

−







, ∀ and  ∈

−


 



, ∀). The purpose of the system is to determine the

DOA angles to targets in a common range bin. The assumption of
a common range bin implies that all waveforms are received with a
common time delay after transmission. Targets are assumed in the
far-field, meaning that a target’s DOA parameter  , sin (where
 is the DOA angle) is constant across the array.

Following [11], the DOA estimation problem can be cast in a
sparse localization framework. Neglecting the discretization error,
it is assumed that the targets’ possible locations comply with a grid
of  points 1: (with  À ). We define the ×  matrix
A = [a (1)     a ()], where

a () , c ()⊗ b () (1)

where b () =

exp

−

1

     exp

−




is the
receiver steering vector, while the transmitter steering vector is
c () =


exp

−

1

     exp

−



. We can then

express the signal model as

y = Ax+ e (2)

where e ∈ C represents the noise, which is assumed to be in-
dependent and identically distributed (i.i.d.) complex Gaussian, i.e.,
e ∼ CN 

0 2I

. The unknown vector x ∈ C contains the targets

locations and gains. Zero elements of x correspond to grid points
without a target. The problem (2) is sparse in the sense that x has
only ¿  non-zero elements.

3. THEORETICAL RESULTS

In this section, we show how to choose the grid-points 1:, the
number of elements  and  , and the distributions governing the
elements’ positions  () and  () in order to obtain recovery guar-
antees for sparse localization with MIMO random arrays. The com-
pressive sensing paradigm implies that a sparse signal x (encoding

k-th target

kϑ
λ� / 2

n-th rx element m-th tx element

2
ξm

Z

2 n

Z ζ

Fig. 1. System model

the targets’ locations) can be recovered from a number of observa-
tions significantly lower than the Nyquist array (also known as “vir-
tual ULA”). This is possible if random sampling is applied in the
measurement process, and if x is recovered solving either the non-
convex combinatorial 0-norm problem

min
x
kxk0 s.t. ky−Axk2 ≤  (3)

or one of its approximations, for example, a greedy method or the
constrained complex LASSO:

min
x
kxk1 s.t. ky−Axk2 ≤  (4)

This section establishes two kinds of recovery guarantees: uni-
form and non-uniform. A uniform recovery guarantee means that,
for a fixed instantiation of the random measurement matrix A, all
possible-sparse signals can be recovered with high probability. In
contrast, given an arbitrary -sparse vector x, and draw A at ran-
dom (independently of x), non-uniform recovery details under what
conditions an algorithm (e.g., (4)) will recover x with high probabil-
ity. Clearly, uniform recovery implies non-uniform recovery, but the
converse is not true. Indeed, whereas uniform guarantee focus on
the recovery of the worst-case-sparse signal for a fixed matrixA,
a non-uniform recovery result captures the typical recovery behavior
for the random measurement matrixA.

3.1. Uniform recovery

An important quantity for uniform recovery is the coherence of A,
defined as the maximum inner product between normalized columns
of the matrixA,

 , max
6=

a a
kak2 kak2

 (5)

This parameter is closely related to the array pattern (or beampat-
tern) [12]. In array processing, the array pattern is the system re-
sponse of an array beamformed in direction  to a unit amplitude
target located in direction :

 () ,
1





=1



=1
exp [ ( + )] (6)

where we defined  ,  ( − ) . The peak of the ab-
solute value of the array pattern for a target colinear with the
beamforming direction, i.e., | (0)|, is called the mainlobe. Peaks
of | ()| for  6= 0, are known as sidelobes, and the largest
among all the sidelobes is called the peak sidelobe. Since the ar-
ray pattern is the inner product between two normalized columns
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of the measurement matrix, the coherence  may be interpreted
as the peak sidelobe associated with the dictionary A. While the
pattern  () captures both transmit and receive properties of
MIMO radar, we also define array patterns addressing the trans-
mit and receive function separately: the transmit array pattern
 () , 1





=1 exp () =
1

c c , and the receiver

array pattern  () , 1




=1
exp () =

1

b b .

The random variables  (),  () and  () are related
via the Kronecker structure of the each column of A, as per (1).
Consequently, the inner product between two columns ofA factors
as:

a

 a = c


 cb


 b (7)

The following theorem exploits (7) to obtain a bound on the coher-
ence of the matrixA:

Theorem 1. Let the locations  of the transmit elements be drawn
i.i.d. from a distribution  (), and the locations  of the receive
elements be drawn i.i.d. from a distribution  (). Assume that  (),
 () and the uniform grid 1: are such that the transmitter and
receiver array patterns satisfy

E

(1)


=E

(21)


=E

(1)


=E

(21)


=0 (8)

for  = 2 to , where 1 =  ( − 1) . Then the coherence
ofA satisfies

Pr (  )  1−

1− 2

√
1


2
√


−1
(9)

where 1 (·) is the modified Bessel functions of the second kind.

Proof. An outline of the proof is given in the Appendix.

Since the coherence may be interpreted as the peak sidelobe of
the array pattern, (9) characterizes the probability of the peak side-
lobe exceeding . This result is not asymptotic (i.e., it does not need
the number of measurements to go to infinity), on the contrary,
it holds for any values of , and. The bound tightness increase
with , but it is already tight for =  = 15 elements.

The coherence  plays a key role in obtaining uniform recovery
guarantees of compressive sensing algorithms. For instance, using
the coherence , it is possible to obtain a bound on the RIP con-
stant,  ≤ ( − 1) [13], which ensures stable and robust recov-
ery from noisy measurements using (4). In particular, by building
on Theorem 1, it can be shown that if the number of MIMO radar
measurements satisfies

 ≥ 
2
(log+ log (log))

2 (10)

where  is a constant, uniform recovery of all -sparse signals is
obtained with high probability via (4). The proof of this relation
cannot be included here due to space considerations, but will be ad-
dressed in a future publication.

The significance of (10) is to indicate the number of elements
necessary to control the peak sidelobe. To the authors knowledge
Theorem 1 is the first non-asymptotic result to characterize the co-
herence for the peculiar structure of the measurement matrix A in
MIMO spatial compressive sensing (see (1)).

3.2. Non-uniform recovery

In this section, we investigate non-uniform recovery guarantees. In
recent work [8], it has been shown that, for a sufficient number of

i.i.d. compressive sensing measurements, performance can be guar-
anteed if a specific property of the random measurement matrix A,
called isotropy, holds. The isotropy property states that the compon-
ents of each row of A have unit variance and are uncorrelated, i.e.,
E

A ( :)A∗ ( :)


= I for every . However, this result cannot

be directly used in our framework since the  rows of the mat-
rixA, following (1), are not i.i.d. The structured scenario when the
measurements (rows of the matrix A) are not i.i.d. is addressed in
[10], where non-uniform recovery is guaranteed for a MIMO radar
system with transceivers if the isotropy property (under the name
aperture condition) holds. The  transceivers MIMO radar setup is
a special case of our  transmitters and  receivers MIMO radar
framework, obtained by drawing 1: at random and deterministic-
ally setting  =  for all . The following theorem derives con-
ditions on grid points 1: and probability distributions  () and
 (), for the random matrixA to satisfy the isotropy property:

Theorem 2. Let the locations of the transmit elements  be drawn
i.i.d. from a distribution  (), and the locations of the receiv-
ers  be drawn i.i.d. from a distribution  (). For every ,
the -th row of A in (2) satisfies the isotropy property [8], i.e.,
E

A ( :)A∗ ( :)


= I, iff  (),  () and 1: are such that

E [exp ()] = 0 ∀ 6=  (11)

where  ,  +  and  ,  ( − ) .

Proof. An outline of the proof is given in the Appendix.

Theorem 2 links the probability distributions  () and  ()

(through the characteristic function of ) and the grid-points 1:
with the isotropy property of the matrixA. When (11) holds, it can
be shown that the aperture condition used in [10] holds too. There-
fore, using the same approach as in [10], non-uniform recovery of
targets via (4) can be guaranteed in the proposed spatial compressive
sensing framework from

 ≥  (log)
2 (12)

MIMO radar noisy measurements, where  is a constant.

3.3. Setup for Theorem 1 and 2

We now provide an example of choices of  (),  () and 1: that
meet the requirements of Theorem 1 and Theorem 2. Let,  =
 = 2, such that the independent random variables  and  are
both confined to the interval

− 1
2
 1
2


. For 1, conditions (8) impose

constraints on the characteristic functions of  and  evaluated at
1 and 21. For Theorem 2, condition (11) imposes a constraint
on the characteristic function of the random variable  ,  + .

The characteristic function of a uniform random variable  ∼
U − 1

2
 1
2


is the sinc function, i.e.,  () = sin (2)  (2).

Therefore, by choosing 1: as a uniform grid of 2-spaced
points in the range [−1 1], since  ,  ( − )  =
2 |− |, we have that  () =  (2) = 0 for any  6= .

It then follows that, by choosing 1: as a uniform grid of
2-spaced points in the range [−1 1]: (1) when both  and 
are uniformly distributed, relations (8) hold, and we can invoke
Theorem 1 (uniform recovery); (2) when either  or  are uniformly
distributed, (11) holds (since  () =  () ()), and we can
invoke Theorem 2 (non-uniform recovery).

The number of grid points  is not a free variable, because the
grid points 1: must satisfy (8) or (11). For instance, in the example
above, 1: must be a uniform grid of 2-spaced points between
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[−1 1], and the number of grid points is  =  + 1. In other
words, the resolution depends on the “virtual” array aperture .

Finally, non-uniform recovery, i.e., (11), requires only one dens-
ity function, say  (), to be uniform, while the other distribution,
 (), can be arbitrarily chosen, e.g., it can be even deterministic-
ally dependent on . For instance, (11) is satisfied in a MIMO radar
system with  transceivers, i.e., when 1: are i.i.d. uniform dis-
tributed and we deterministically set  =  for all .

4. NUMERICAL RESULTS

We present numerical results to illustrate the proposed framework.
We follow the setup detailed in the previous section, i.e.,  (),  ()
are both uniform distributions,  =  = 2 and 1: rep-
resents a uniform grid of 2-spaced points in the interval [−1 1].
This implies that the number of grid points is = +1. The sys-
tem transmits  orthogonal spread spectrum waveforms of length
 chips each. The waveforms were chosen in discrete form as
the rows of the  ×  Fourier matrix. We set the target gains
 = exp (−), with  drawn i.i.d., uniform over [0 2), for
all targets  = 1    . We set the noise e ∼ CN 0 2I, and
the SNR was defined as −10 log10 2. Monte Carlo simulations
were carried out using independent realizations of target gains, tar-
gets locations, noise and element positions.

Target localization was implemented using the Complex Ap-
proximate Message Passing (CAMP) proposed in [14] to solve
(4). In addition, we also simulated the Multi-Branch Match Pur-
suit (MBMP) algorithm, a greedy method proposed in [11]. For
the CAMP algorithm, we set the parameter  = 2, as suggested
in [14], and, if not converged, the algorithm was terminated after
1000 iterations. The support was then estimated as the  largest
modulo entries of the product of CAMP (see [14] for more details).
Concerning MBMP, it requires as input a  length branch vector,
set to d = [1     1] (see [11] for details on setting parameters for
MBMP). The output of MBMP is the estimated support.

Fig. 2 illustrates the probability of support recovery error
(defined as the event that at least one index of the support is estim-
ated incorrectly) as a function of the number of measurements .
The virtual aperture was  = 250 (thus  = 251), the SNR was
15 dB, and tests were carried out for  = 5, 10 and 20 targets. In
addition to the superior performance of MBMP, which may be par-
tially explained by a slightly higher complexity, but merits further
investigation, it can be seen that, as dictated by (12), the number of
sensors needed is approximately linear in.

5. CONCLUSIONS

We propose a spatial compressive sensing framework to address the
DOA localization problem for a random array MIMO radar system.
We link system design quantities, such as the probability distribu-
tions  () and  () of the sensors locations and the sparse localiza-
tion grid points 1:, to the coherence  and the isotropy property of
the measurement matrixA. Based on these two results, we establish
uniform and non-uniform recovery guarantees. In particular, the pro-
posed framework supports non-uniform recovery of  targets with
 =  (log)

2 MIMO radar elements, where is proportional
to the resolution. The significance of the logarithmic dependence
in  is that the proposed framework enables high resolution with a
small number of MIMO radar elements. This is in contrast with a
filled virtual MIMO array where scales linearly with .
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Fig. 2. Probability of support recovery error as a function of the
number of rows of the measurement matrixA.

6. APPENDIX

6.1. Theorem 1: Outline of proof

Here we outline the steps to obtain (9). For a uniform grid 1:,
the Hermitian matrix AA has a Toeplitz structure. As such, the
coherence of A is the maximum among the elements of the first
row of AA, i.e.,  = max1

1


a1 a. Consider the term
1



a1 a. Using (7), 1


a1 a =  1 b1 b  1


c1 c.
In [5], it was shown that if the locations 1: are drawn i.i.d.
from an even distribution  (), and if the uniform grid spacing
1: satisfies E


 (1)


=E


 (21)


=0, then the random

variable  (1) =
1

b1 b follows a CN (0 1) distribution.

Under similar conditions,  (1) =
1

c1 c ∼ CN (0 1).

Also  (1) and  (1) are independent. Thus
1



a1 a
is distributed as the product of two independent Rayleigh random
variables with parameters = 1

√
2 and = 1

√
2 , respect-

ively. The closed form cumulative distribution function (cdf) of
such random variable is given in [15], Pr


1



a1 a ≤ 

=

1 − 2
√
1


2
√



, where 1(·) is the modified Bessel

function of the second kind. From  = max1
1



a1 a, and
making the conservative assumption of independence between the
 − 1 variables 1



a1 a, for  = 2 to , the complementary
cdf of the maximum among these− 1 variables is upper bounded
by Pr (  )  1− Pr  1



a1 a ≤ 
−1

, obtaining (9).

6.2. Theorem 2: Outline of proof

Here, we outline the proof of Theorem 2. Using (1), for the element
index  in the vectors a () and a (), we have a

∗
 ()a () =

exp [ ( + )], where  ,  ( − )  and  =
 (−1)+. Also, the average of exp [ ( + )] does not
depend on the index  and, since 1: are identically distributed,
and so are 1: . By dropping the indexes of  and  and using
 =  +  we have E [a∗ ()a ()]=E [exp ()] ∀. Com-
bining this with (11), and noticing that exp () = 1 for every ,
we obtain the “if” direction of the claim. The “only if” direction fol-
lows since when (11) is not satisfied, there exist one pair of indexes
 and  such that E [a∗ ()a ()]=E [exp ()] 6= 0.
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