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ABSTRACT

Multiple-input multiple-output (MIMO) radar with colocated
antennas is expected to achieve good imaging performance
via coherent processing. However, a crucial factor to this
process−phase synchronization, which directly determines
the performance gain, has rarely been studied in previous
works. Hence in this paper, given the sparsity of the target, we
address the problem of imaging for colocated MIMO radar
under the phase synchronization mismatch. Based on the
model assumption that the phase synchronization mismatch
in each propagation path is an independent and identically
distributed uniform random variable, we combine the sparsity
of the target and expectation maximization (EM) method to
develop an EM-based sparse imaging algorithm against such
random phase mismatch. The effectiveness of the proposed
algorithm is demonstrated by numerical simulations.

Index Terms— Expectation maximization, MIMO radar,
phase synchronization mismatch, sparse imaging

1. INTRODUCTION

Together with the sparse priority of target, Multiple-input-
multiple-output (MIMO) radar with colocated antennas has
been shown to be of great ability to provide high-resolution
imaging in the wavenumber domain [1] [2] [3].

This good reconstruction performance is mainly brought
by coherent processing. However, the phase synchronization−
a crucial factor to coherent processing− is hard to realize per-
fectly and thus always an inevitable problem. Its imperfect
implementation evidently could lead to performance degrada-
tion. As to phase synchronization mismatch in MIMO radar,
its influence on detection has been studied in [4], on localiza-
tion in [5][6], and further on tracking in [7], but relatively less
attention has been paid on colocated MIMO radar imaging.
Hence, under the premise of sparse target, we investigate the
problem of colocated MIMO radar imaging associated with
random phase synchronization mismatch. In this case, the
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reconstruction is not straightforward because of the random-
ness of phase mismatch, and the conventional sparse recovery
techniques [8], such as the Lasso algorithm, would become
inefficient. So we resort to the combination of expectation
maximization (EM) method [9] and sparsity of target to de-
velop an EM-based sparse imaging algorithm. In addition to
the sparse priority, our algorithm also takes advantage of EM
method to efficiently exploit the statistical property of signal
and provides high reconstruction performance by iteratively
alternating between the expectation stage and maximization
stage.

Notations: (·)∗, (·)T and (·)H denote the conjugate, the
transpose and the conjugate transpose operation respectively.
diag(·) indicates diagonalization while blkdiag(·) is the block
diagonalization. sinh(·), cosh(·) and coth(·) mean the hyper-
bolic sin, the hyperbolic cosine and the hyperbolic cotangent
function, respectively.

2. SIGNAL MODEL

Consider a two dimensional (2-D) colocated MIMO radar
with M transmitters and N receivers in wavenumber domain
[1] . Define (RTxm , ϕTxm ) (form = 1, · · · ,M ) and (RRxn , ϕRxn )
(for n = 1, · · · , N ) as the positions in the polar coordinate
of the m-th transmitter and the n receiver, respectively. The
center of imaging scene of interest is regarded as the origin of
the coordinate and we suppose that there are only L scatter-
ers. Exploiting the far-field approximation and orthogonality
separation, we can obtain the echo with the phase synchro-
nization mismatch ψnm at the n-th receiver corresponding to
the m-th transmitter as

ynm (f) =

L∑
l=1

σ (rl) ej2πKnm(f )·rl e−jψnm + znm (f) (1)

where σ(rl) denotes the complex reflectivity of the l-th scat-
terer with the location rl = (xl, yl) (for l = 1, · · · , L).
znm(f) is the additive noise. Knm (f) indicates the sampling
of 2-D wavenumber domain, given as (Kx

nm,K
y
nm),{

Kx
nm (f) = f+fm

c

(
cosϕTxm + cosϕRxn

)
Ky
nm (f) = f+fm

c

(
sinϕTxm + sinϕRxn

) (2)
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where f ∈ [−Bm

2 , Bm

2 ], Bm and fm are the narrow band-
width and the carrier frequency of them-th transmitted signal,
respectively. c is the propagation velocity of electromagnetic
wave. A compact form of (1) can be written as

ynm (f) = e−jψnm aTnm (f)σ + znm (f) (3)

where σ = [σ (r1) · · ·σ (rL)]T , anm(f) is an L × 1 vector
and its l-th element has the form of ej2πKnm(f )·rl . We assume
that there are K frequency sampling points and stack them
into a K × 1 vector, ynm = [ynm(f1), · · · , ynm(fK))]T , i.e.,

ynm = ΨnmAnmσ + znm (4)
where Ψnm = diag

(
e−jψnm(1), · · · e−jψnm(K )

)
and is the

sampling matrix of phase error corresponding to the nm-th
propagation path which refers to the path from them-th trans-
mitter to the n-th receiver. Anm = [anm(f1), · · · ,anm(fK)]T

and znm = [znm (f1) , · · · , znm (fK)]T . Then, combining
all the observations from NM propagation paths, we obtain

y = [y11
T , · · · , yNMT ]T = ΨAσ + z (5)

where z = [zT11, · · · , zTNM ]T , A = [AT11, · · ·ATNM ]T , and
Ψ = blkdiag (Ψ11, · · · ,ΨNM ).

In (5), we assume z is independent and identically dis-
tributed (i.i.d.) zero-mean complex multivariate normal
random vector with unknown covariance matrix ηI (I is a
NMK × NMK unit matrix) and assume all the ψnm(k)
being i.i.d. and obeying uniform distribution over the rel-
atively small range [−∆π,∆π] (|∆| < ζ, ζ delineates the
possibly maximal spread of the density). For simplicity, let
ρ = NMK and Θ be the collection set of {ψnm(k)} for
n = 1, · · · , N , m = 1, · · · ,M , k = 1, · · · ,K. Hence,
conditioned on Θ with known A and unknown σ, ∆ and η,
we get the following probability distribution for (5)

p (y |∆, η,Θ,σ ) = 1
(πη)ρ e

− 1
η ∥y−ΨAσ∥2

2 . (6)

Given the statistical assumption above, the solutions for
maximum likelihood estimates of σ, η,∆ from the observed
data likelihood function p (σ, η,∆ |y ) is not straightforward.
Therefore, we resort to EM method; cf. [4]. Define (y,Θ) and
(∆, η,σ) as the complete data and parameter sets, denoted as
γcd and Λ, respectively. The jointly probability function for
γcd and Λ is computed as (7) based on the independency
among σ, η and {Θ,∆}

p (γcd,Λ) = p (σ) p (η) p (Θ,∆) p (y |η,Θ,σ,∆) (7)
where p (η) = p (σ) = 1 (for the consideration of their deter-
ministic characteristic), and p (Θ,∆) takes the form as

N∏
n=1

M∏
m=1

K∏
k=1

p(ψnm(k),∆) =
N∏
n=1

M∏
m=1

K∏
k=1

1

2∆π
. (8)

Subtituting (6) and (8) into (7), we get its log-likelihood
function in a unfolded expression as

ln p(γcd,Λ) = C − ρ ln η − ρ ln∆

−1

η

(
∥y∥22 + σHAHAσ

)
+
2

η
Re
{
yHΨAσ

} (9)

where C is a constant. If there is no phase synchronization
mismatch, i.e., Ψ = I, the estimation of the parameter set
would degenerate into a problem to maximize ln p(γcd,Λ)
with respect to Λ. Specifically, under the sparsity of the tar-
get in terms of l1-norm, the popular sparse imaging would
be implemented by minimizing λ ∥σ∥1 + ∥y −Aσ∥22 (λ is a
penalty factor), i.e, the Lasso algorithm [8] which will then be
used as a baseline in Section 4.

3. EM-BASED SPARSE IMAGING

Due to the existence of mismatch matrix Ψ, the performance
degradation by conventional sparse imaging is inevitable.
Therefore, the EM method which efficiently exploits the
statistical property of signal model and does increase the like-
lihood function with the growth of iteration is used. Our EM-
based sparse imaging consisting of two stages−expectation
(E-stage) and maximization (M-stage)−is detailed below.

3.1. E-stage

In the E-stage of the q-th iteration, we compute the condi-
tional expectation of (9) given the observed data y and the es-
timated parameter set Λ(q−1) (i.e. Λ(q−1) =

{
∆(q−1), η(q−1),

σ(q−1)
}

) which is attained in the former M-stage of the
(q − 1)-th iteration, as shown in (10)

Lcd

(
Λ(q−1)

)
= Ep(Θ|y )

{
ln p(γcd,Λ)

∣∣∣y,Λ(q−1)
}

=− ρ ln η(q−1) − ρ ln∆(q−1)

− 1

η(q−1)

(
∥y∥22 +

(
σ(q−1)

)H
AHAσ(q−1)

)
+

2

η(q−1)
Re
{
Ep(Θ|y )

{
yHΨAσ|y,Λ(q−1)

}}
(10)

where the constant term has been suppressed. We can com-
pute the conditional distribution p(Θ|y) through p(Θ,y) and
p(y), where

p (Θ,y) =
1

(πη)ρ
e−

1
η ∥y−ΨAσ∥2

2

(
1

2π∆

)ρ

p (y) =

∆π∫
−∆π

· · ·
∆π∫

−∆π

p (Θ,y) dΘ

. (11)

Additionally, ψnm(k) is assumed to vary in a relatively
small range so that such approximations, i.e., sin(ψnm(k)) ≈
ψnm(k) and cos(ψnm(k)) ≈ 1, are roughly available, then
p(Θ|y) can be computed as

p (Θ |y ) =
N∏
n=1

M∏
m=1

K∏
k=1

vknm (σ)e
2
η vk

nm(σ)ψnm(k)

η sinh
(

2∆π
η vknm (σ)

) (12)

where vknm (σ) = Im
{
y∗nm (fk)a

T
nm (fk)σ

}
.
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Hence, the last term of the right side of the second equa-
tion in (10) could be approximated as

Re

{
2

η(q−1)
Ep(Θ|y)

{
yHΨAσ|y,Λ(q−1)

}}
≈

2Re
{
yHAσ(q−1)

}
η(q−1)

+

N∑
n=1

M∑
m=1

K∑
k=1

hknm(Λ(q−1))

(13)

where hknm(Λ(q−1)) = 2
η(q−1)Ep(Θ|y )

{
vknm(σ)ψnm (k)|y,

Λ(q−1)
}

. This conditional expectation can be derived
through (12), and omitting the subscript (q − 1), we have

hknm(Λ) =

(
2∆π

η
vknm(σ)

)
coth(

2∆π

η
vknm(σ))− 1.

(14)

3.2. M-stage

Since the conditional expectation Lcd (Λ) in (10) through
E-stage is a function of the parameter set Λ, it is natural
to maximize (10) with respect to Λ, i.e. max

Λ
Lcd (Λ) =

max
η

max
∆

max
σ

Lcd (Λ), to get their MLEs in the M-stage at

the q-th iteration.
For σ, the equivalent problem of sparse reconstruction is

identical to solve

min
σ


λ∥σ∥1 +

1

η(q−1)
σHAHAσ − 2

η(q−1)
Re
{
yHAσ

}
−

N∑
n=1

M∑
m=1

K∑
k=1

hknm

(
∆(q−1), η(q−1),σ

)
 .

(15)
Due to the non-convex character of coth(·) coming from

the conditional expectation, the conventional methods for
convex optimization will not be appropriate here. However,
this function is differentiable apart from the origin point and
Newton-Raphson method is specialized to find stationary
points of differentiable functions [10]. Herein, we exploit
Newton-Raphson method to seek for the solution of σ at the
current iteration. Let f(Λ) substitute the objective function
in (15), and then, its first-order derivative is

∇σ∗f(Λ) = ∇σ∗(λ ∥σ∥1) +
2

η
AHAσ − 2

η
AHy

−
N∑
n=1

M∑
m=1

K∑
k=1

∂hknm (Λ)

∂vknm (σ)

∂vknm (σ)

∂σ∗

(16)

where

∂hknm(Λ)

∂vknm(σ)
=
hknm(Λ) + 1

vknm(σ)

(
1− hknm (Λ) + 1

cosh 2( 2∆πη vknm (σ))

)
∂vknm (σ)

∂σ∗ =
j

2
ynm (fk)a

∗
nm (fk)

.

(17)

Then the Hessian matrix of f(Λ) is

∇2
σf (Λ) = ∇2

σ (λ ∥σ∥1) +
2

η
AHA

−
N∑
n=1

M∑
m=1

K∑
k=1

gknm(Λ)
∂vknm(σ)

∂σ∗
∂vknm(σ)

∂σT

(18)

where

gknm (Λ) =
2(hknm (Λ) + 1)2hknm (Λ)

(vknm (σ))2cosh2
(

2∆π
η vknm (σ)

)
∂vknm (σ)

∂σT
=

1

2j
y∗nm (fk)a

T
nm (fk)

. (19)

Hence, at the q-th iteration, a series of inner iterations,
denoted as σ(q)

(i) (for i = 1, 2, · · · ), is established to estimate
the current σ(q), in which the previously estimated σ(q−1)

is used as the initial value, i.e. σ
(q)
(0). This inner iteration is

presented as

σ
(q)
(i) = σ

(q)
(i−1) − [H

(q)
(i) ]

−1∇σ∗f
(
∆(q−1), η(q−1),σ

(q)
(i)

)
(20)

where H
(q)
(i) = ∇2

σf
(
∆(q−1), η(q−1),σ

(q)
(i−1)

)
+B

(q)
(i) , and

B
(q)
(i) is the digonal matrix to guarantee the invertibility of

Hessain matrix, that is, H(q)
(i) > 0. The inner iteration yields

σ(q) when σ
(q)
(i) reaches its stationary point.

Similarly, the parameter ∆ and η will be updated by max-
imizing Lcd

(
∆, η(q−1),σ(q)

)
and Lcd

(
∆(q), η,σ(q)

)
with

respect to ∆ and η, respectively. That means

min
∆

{
ρ ln∆−

N∑
n=1

M∑
m=1

K∑
k=1

hknm

(
∆, η(q−1),σ(q)

)}
.

(21)

min
η


ρ ln η +

1

η

(
∥y∥22 +

(
σ(q)

)H
AHAσ(q)

)
−1

η
Re
{
Ep(Θ|y )

{
yHΨAσ

∣∣∣y,∆(q),σ(q)
}}
.
(22)

Also, Newton-Raphson method is utilized in (21) and
(22) to obtain ∆(q) and η(q).

The E-stage and M-stage alternatively iterate until σ(q),
∆(q) and η(q) converge.

4. SIMULATION

We consider a 2-D colocated MIMO radar with M = N = 5.
The transmitters and receivers are uniformly distributed, and

Table 1. Parameters of MIMO radar
Carrier frequency f0 8.9GHz
Narrow bandwidth Bm 50MHz
Transmitter Position (xTxm , yTxm ) (-10Km, 25(m− 1)m)
Receiver Position (xRxn , yRxn ) (-10Km, 5(n− 1)m)
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(a) absence of phase synchronization mismatch
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(b) presence of phase synchronization mismatch

Fig. 1. Imaging by minimizing λ ∥σ∥1 + ∥y −Aσ∥22

their positions are expressed in the Cartesian coordinate, that
is, (xTxm , yTxm ) = RTxm (cosϕTxm , sinϕTxm ) and (xRxn , yRxn ) =
RRxn (cosϕRxn , sinϕRxn ). The carrier frequency of the m-th
transmitted signal is fm = f0 + (m − 1)Bm and f0 cor-
responds to the first transmitter. The detail parameters are
shown in Table 1. Moreover, λ equals 1, the signal-to-noise
ratio is set to 10dB and ∆ takes the value of 1/6.

From the comparasion between Fig.1(a) and Fig.1(b), it
is obvious that in the presence of phase mismatch, the imag-
ing performance by minimizing λ ∥σ∥1 + ∥y −Aσ∥22 is se-
riously degraded.

Fig.2 shows that the proposed EM-based algorithm which
takes the result of Fig.1(b) as the initial value σ(0) remarkably
improves the negative impact affected due to phase synchro-
nization mismtch.

5. CONCLUSION

For the sparse imaging in colocated MIMO radar, we present
an EM-based sparse imaging algorithm to realize recon-
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Fig. 2. Imaging by the EM-based algorithm

struction under the phase synchronization mismatch. This
proposed algorithm efficiently exploits the statistical property
of phase mismatch. In spite of the trigonometric function
approximation in (12), it wouldn’t restrict our algorithm to
merely face up a relatively small spread of phase synchro-
nization error. The simulations clearly confirm this advantage
of our algorithm, as well as its competence to support better
reconstruction performance.
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