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ABSTRACT
In this paper we propose a sparse model to accurately estimate
target locations in a distributed multiple-input multiple-output
(MIMO) radar system with phase mismatches at transmitters
and receivers. We formulate the localization problem based
on maximum a posteriori (MAP) estimation. To reduce the
effect of phase mismatches we develop a novel alternating
minimization approach based on sparse signal recovery and
structured matrix perturbation. Using numerical simulations,
we show that our algorithms significantly improve the perfor-
mance of the distributed MIMO radar system.

Index Terms— distributed MIMO radar, phase mis-
match, alternating minimization

1. INTRODUCTION

Multiple-input multiple output (MIMO) radar systems have
attracted much attention recently [1]-[3]. They have two con-
figurations, namely colocated MIMO radar [4], [5], and dis-
tributed MIMO radar [6]-[8]. Colocated radars use multi-
ple closely located transmitters and receivers. They employ
waveform diversity to explore the region of interest. Unlike
colocated MIMO radar, the distributed version has several
scattered transmitters and receivers. It explores the spatial
diversity by looking at the region of interest from different
angles or distances.

Exploring sparsity is a fast growing area in the field of
signal reconstruction [9]-[11]. Recent research has used com-
pressive sensing in both colocated and distributed MIMO to
explore the sparsity in the region of interest [12]-[16]. In dis-
tributed MIMO radar, phase mismatch always exists during
the signal processing since perfect synchronization is impos-
sible in a distributed configuration. The phase mismatch has
been well studied from the statistical perspective, and the cor-
responding Cramér-Rao bound has been derived [17],[18].
Phase mismatch can be modeled as basis mismatch in the
compressive sensing problem. The sensitivity of this problem
has been researched in [19]. In [20], an alternating minimiza-
tion method based on total least squares has been proposed to
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solve the sparse signal reconstruction with matrix perturba-
tion.

In this paper, we set up a more realistic distributed MIMO
radar system. Unlike [14], our signal model does not include
a matching filter in each receiver. In addition, we consider
the phase mismatches at the transmitters and receivers due to
the imperfect synchronization. The phase mismatches at the
transmitters and receivers are assumed to be virtually static
during the entire coherent processing interval (CPI) [17].
They are independently and identically distributed random
variables with uniform distribution. The method underlying
this paper is inspired by the concept of sparsity-cognizant
total least squares [20]. But unlike sparsity-cognizant total
least squares, which considers the perturbed error only as a
Gaussian distribution, our method can be applied to other
distributions. Compared to the traditional sparsity signal
reconstruction method we show improvements in the recon-
structed signal in terms of correctly detecting the number
of targets and increasing the probability of detection while
maintaining a desired level of false alarm.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the signal model for the distributed MIMO
radar with phase mismatches. In Section 3, we formulate the
optimization problem from the maximum a posteriori point
of view, and propose the Alternating LASSO (ALASSO) al-
gorithm. In Section 4, we give numerical results to show the
performance of our algorithm. In Section 5, we conclude the
paper.

2. PHASE MISMATCH MODEL

We consider a distributed MIMO radar with MT transmit-
ters, MR receivers, and K targets. The transmitters and re-
ceivers are widely separated. We denote the location of the i-
th transmitter by [T ix, T

i
y] and the location of the j-th receiver

by [Rix, R
i
y]. The location of the k-th target is indicated by

[P kx , P
k
y ]. Suppose xi(t) indicates the waveform generated

by the i-th transmitter at time t, then it has the form

xi(t) =

L∑
n=0

βincinu(t− nT ), i = 1, ...,MT, (1)
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where u(t) is a pulse function which can be written as

u(t) =

{
1 if 0 ≤ t ≤ T ,
0 otherwise. (2)

The parameter cin follows an i.i.d. Gaussian distribution and
βin is a random on-off pattern which determines whether the
waveform is transmitted at n-th time or not. Some of them
can be set to zeros if we want to save transmitting energy in
the application. We assume all βin equal to 1 for now. T is the
interval length of each pulse and is also the sampling interval
for the receivers. With the narrow band assumption (since
xi is piecewise stationary) we can ignore the delay terms and
time mismatch terms in xi(t)[5] [16] and only consider the
mismatch terms in the exponential terms .

In a compressive sensing model we normally discretize
the space into several grids and use the vector s = [s1, . . . , sP ]T

to present the reflection factors from each of the grids. In our
model s is defined as

sp =

{
αk k-th target is at this point,
0 otherwise. (3)

Now we rewrite the signal model in a sampled format and
we neglect the sample interval T in the equations for simplic-
ity. The mixed signal at the p-th grid equals

yp(n) =

MT∑
i=1

xi(n)e−j
2πfc
c dtip+jθ

t
i , (4)

where fc indicates the transmitting frequency of the radar sys-
tem, c indicates the speed of radar signal, dtip indicates the
distance between i-th transmitter and p-th grid, θti is the phase
mismatch of i-th transmitter, and n is the time index for the
n-th sample. After rewriting equation (4) in its vector form,
we get

yp(n) = xT(n)up, (5)

where
x = [x1(n), · · · , xMt(n)]T, (6)

up = [ejθ
t
1e−j

2πfc
c dt1p , · · · , ejθ

t
MT e−j

2πfc
c dtMT p ]T. (7)

Then the signal received by the j-th receiver can be written as

zj(n) =

P∑
p=1

spe
−j 2πfc

c drjp+jθ
r
jyp(n), j = 1, . . . ,MR,

(8)
in which θrj presents the phase mismatch between the j-th
receiver and the information of the fusion center, where all
the received signals are collected. drjp indicates the distance
between j-th receiver and p-th grid.

Suppose we take L snapshots, and then stack all the mea-
surements from the j-th receiver in one vector. We will have

zj =

 zj(0)
...

zj(L− 1)

 =

P∑
p=1

spe
−j 2πfc

c drjp+θ
r
jXup+ej = Ψjs+ej ,

(9)
where X = [x(0), . . . ,x(L − 1)]T. ej denotes the noise
received by the j-th receiver during sampling. In our work we
assume the noise is i.i.d. Gaussian. s indicates the locational
signal with s = [s1, . . . , sP ]T, and Ψj represents the basis
for the j-th receiver:

Ψj = [e−j
2πfc
c drj1+jθ

r
jXu1, . . . , e

−j 2πfc
c drjP+jθrjXuP ].

(10)
In order to make the model more concise, we stack all the

information received by the fusion center into one vector as:

z =

 z1
...

zMR

 = H(θt,θr)s+ e (11)

where

H(θt,θr) =

 Ψ1

...
ΨMR

 (12)

which is a matrix function determined by the unknown phase
mismatches θt = [θt1, . . . , θ

t
MT

]T and θr = [θr1, . . . , θ
r
MR

]T.

3. ALTERNATING MINIMIZATION METHOD

According to Bayesian compressive sensing [21], we can
assume that the spatial signal s follows the widely used prior
Laplacian distribution. In the meantime we assume the phase
mismatches from the transmitters and receivers follow uni-
form distribution U(θ1, θ2) and U(θ3, θ4) respectively[17].
Therefore the maximization of the posterior log-likelihood
function can be formulated into the optimization as follows:

min
θt,θr,s

‖z −H(θt,θr)s‖22 + ρ‖s‖1 (13)

subject to θ1 ≤ θt ≤ θ2,θ3 ≤ θr ≤ θ4. (14)

Then we use the equation ejθ = cosθ + jsinθ = 1 + jθ
when θ is small enough, i.e., θ ≤ 30◦. With this, we can
rewrite our objective function and use coordinate descent to
find a solution.

After approximation of phase mismatch terms, we have
our system matrixH as

H = [a1 ⊗Xũ1,a2 ⊗Xũ2, . . . ,aP ⊗XũP ], (15)
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in which

ap =

 (1 + jθr1)e−j 2πfcc dr1p
...

(1 + jθrMR
)e−j 2πfcc drMRp

 , (16)

ũp =

 (1 + jθt1)e−j 2πfcc dt1p
...

(1 + jθtMT
)e−j 2πfcc dtMTp

 . (17)

The symbol ⊗ is used to indicate the Kronecker product of
two matrices. With this H we can apply alternating mini-
mization among the three variables θt, θr, and s. When we
fix θt and θr, the minimization is just the standard LASSO
problem as follows:

min
s

‖z −Hs‖22 + ρ‖s‖1. (18)

Normally we can choose ρ = σ
√

2log(NLMR) when we
solve the LASSO problem according to [22]. In [20], instead
of finding the optimal solution by directly solving equation
(18), in every iteration s is solved only by solving several
one dimension LASSO problems sequentially. When we fix
θr and s or θt and s, we will have a linear structured matrix
perturbation problem, which can be solved when we writeH
in the form of the original matrix and basis matrices for the
perturbation.

First we write the measurement model as a linear combi-
nation of elements of θt when we fix θr and s. We have

z = Ht
0s+ jθt1H

t
1s+ · · ·+ jθtMT

Ht
MT
s+ e, (19)

where Ht
0, andHt

i (i = 1, . . . ,MT) can be obtained by
rewriting equation (15). Therefore we have the optimization
problem as follows:

min
θt

‖z −Ht
0s−

∑MT

i=1 jθ
t
iH

t
i s‖22 (20)

subject to θ1 ≤ θt ≤ θ2. (21)

This is a constrained least squares problem which is con-
vex and has a feasible solution, so the optimal solution can
be found easily through the application of KKT conditions.
Now if we fix θt and s, we will have a similar optimization
problem as the above one. The measurement model can be
rewritten as

z = Hr
0s+ jθr1H

r
1s+ · · ·+ jθrMR

Hr
MR
s+ e. (22)

Likewise, the optimization problem can be characterized as

min
θr

‖z −Hr
0s−

∑MR

i=1 θ
r
iH

r
i s‖22 (23)

subject to θ3 ≤ θr ≤ θ4 (24)

Algorithm 1 (Alternating LASSO)

Initialize: θr = 0, θt = 0, s0 = 0, m = 0 (iteration indicator)
n = the dimension of reconstructed signal s

while not converge do set k = 1,
while k ≤ n
r = z −

∑k−1
j=1 hjsj(m)−

∑n
j=k+1 hjsj(m− 1)

update
sk(m) = arg minsk(t) ‖r − hksk‖22 + λ|sk|
k=k+1

end while
rewrite the system matrix using eqn. (19)
solve the optimization problem (20), and get θt
updateH ,Write the system matrix using eqn. (22)
solve the optimization problem (23), and get θr
updateH and m = m+ 1.

end while
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Fig. 1: The recovered signal using tradition LASSO.

According to [23], given arbitrary initialization, the above
alternating minimization will converge monotonically to at
least a stationary point of the original optimization problem.
A sketch of the algorithm is given in the table named Algo-
rithm 1, in which hj is the j-th column of the system matrix
H , and sj(t) denotes the j-th element of s(t).

4. NUMERICAL RESULTS

In this section we recover the signal using two methods,
namely ALASSO and tradition LASSO. The probability of
detection for all the targets, as well as the Receiver Operating
Characteristic (ROC) curve are plotted. We also show the
case when some proportions of the βin are zeros in equation
1. We demonstrate that in this case transmission energy can
be saved without loss of detection performance.
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Fig. 2: The recovered signal using Alternating LASSO algo-
rithm.

To begin with, we consider a MIMO system with four dis-
tributed transmitters and six distributed receivers. The trans-
mitters are located at

−→
t1 = [100, 0] m,

−→
t2 = [150, 200] m,

−→
t3 = [210, 100] m and

−→
t4 = [800, 900] m. The receivers are

located at −→r1 = [0, 100]m, −→r2 = [0, 200] m, −→r3 = [0, 500]
m, −→r4 = [350, 0] m, −→r4 = [600, 1000] m and −→r6 = [800, 0]
m. The carrier frequency is 1 GHz. The targets are located at
−→p1 = [630, 300]m, −→p2 = [610, 250]m, and −→p3 = [670, 280]m
with reflection factors as α1 = 1(1+j), α2 = 0.8(1+j) and
α3 = 0.5(1 + j).

The phase mismatches in the transmitters are generated
with uniform distributions ranging from −30◦ to 30◦ while
the phase mismatches in the receivers are generated with the
uniform distributions ranging from−20◦ to 20◦. The number
of snapshots is set as 10. All the βin are set to ones at this
time.The SNR are fixed to be 15dB in our simulations.

From Fig.1 we can see that the reconstructed signal is very
noisy and that setting the threshold to distinguish between tar-
get and noise could be very difficult. From Fig. 2, which
considers the distribution of phase mismatch as a prior infor-
mation, we can see the ALASSO method recovers the signal
much better than the first method, and the targets are clearly
separated from the noise.

We also use Monte Carlo simulations to plot the proba-
bility of detection. The number of Monte Carlo runs is 50
for each test point. We change the range of receivers’ phase
mismatch from [−10◦, 10◦] to [−50◦, 50◦] while setting the
phase mismatches in the transmitters as zero. From this com-
parison it is easy to see that with phase mismatch in the model
the original method without considering the mismatch will
deteriorate very quickly, while the one using the information
about distribution of phase mismatches maintains a good per-
formance.

A ROC curve is also plotted for 50 Monte Carlo runs. We
also consider the case when some of βin are zeros.We can see

10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Phase Mismatch Range

P
ro

b
a

b
ilt

iy
 o

f 
D

e
te

c
ti
o

n

 

 

ALASSO

traditional LASSO

Fig. 3: Combined probability of detection by the two meth-
ods.
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Fig. 4: ROC curves for the LASSO and Alternating LASSO
algortihms.

from Fig. 4 that by considering the prior information about
phase mismatches ALASSO can increase the system perfor-
mance dramatically. It also shows that when we only use 40%
or 70% of the transmission waveform, the performance is the
same as the case when we use all the transmission waveforms.

5. CONCLUSION

In this paper, we considered the case of distributed MIMO
radar with imperfect synchronization. We first built the spar-
sity model with phase mismatches. Then by exploring the
prior information about the phase mismatch, we formulated
the alternating LASSO optimization problem and used the al-
ternating minimization algorithm to get the recovered signal.
In a numerical example, we demonstrated that by exploiting
the information about phase mismatch we could highly im-
prove the system’s performance in locating the targets.
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