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ABSTRACT

In recent years, radio positioning has received increasing at-
tention and found many applications in various areas. How-
ever, the existence of non-line-of-sight (NLOS) paths intro-
duces considerable positioning errors. In this paper, we pro-
pose a two-step approach in order to deal with pure NLOS
scenarios based on a simple assumption regarding the propa-
gation environment. A nonlinear least squares (NLS) method
is proposed for the initial estimation, followed by a Kalman
filter-based method to track subsequent movements. Com-
pared with previous studies, fewer measurements are required
to be made. Simulation results are provided to show the per-
formance of both methods.

Index Terms— Localization, positioning, non-line-of-
sight propagation.

1. INTRODUCTION

In recent years, radio positioning has received increasing at-
tention and found many applications in industrial, medical,
public safety, and entertainment areas. The most success-
ful positioning technology is the global positioning system,
which is a medium-earth orbit satellite-based navigation sys-
tem that provides location and timing information. However,
it requires that there exist unobstructed line-of-sight (LOS)
paths from satellites to reception devices. In many cases,
radio signals are obstructed by physical obstacles like trees,
buildings, and mountains, and only non-line-of-sight (NLOS)
paths can be observed. Similar problems also arise for posi-
tioning systems based on signals from base stations (BS) in
cellular systems, where the transmitted waves suffer various
radiation phenomena such as diffraction, refraction, reflection
and scattering before they arrive at the mobile station (MS).
Similarly, complicated radio propagation occurs in densely
populated urban areas due to the existence of man-made ob-
stacles. For a moving car or person, simply turning at a corner
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into a side street may radically change the wireless environ-
ment and the moving object may lose its LOS path to the BS.

With the popularity of mobile communications, many lo-
calization schemes have been proposed, and most of them as-
sume that a LOS propagation path exists between the trans-
mitters and receivers. With this assumption in mind, the ge-
ometric relationship between the target device, whose posi-
tion needs to be precisely estimated, and its reference points
are exploited to obtain knowledge of the physical distances
between them. The most commonly used measurements are
the time-of-arrival (TOA) [1, 2], the time-difference-of-arri-
val (TDOA) [3], and the received signal strength (RSS) [4].
Even in cases where a LOS path exists, additional NLOS ar-
rivals are almost unavoidable, and these NLOS signals act as
the major source of interference that lowers the reliability of
TOA and TDOA measurements, resulting in considerable po-
sitioning errors. Thus far, most research efforts on combating
the effects of NLOS signals have focused on NLOS error mit-
igation, i.e., how to detect multipaths that could be mistak-
enly perceived as LOS paths and then removing their impact
[5]. A pure NLOS environment poses a much more challeng-
ing task to overcome. In this case, it is impossible to make
conventional TOA/TDOA measurements. A potential way to
combat this difficulty is so-called location fingerprinting [6],
which requires a dense deployment of reference devices.

In this paper, we exploit a single-bounce assumption on
the propagation environment to deal with localization in pure
NLOS environments where no direct LOS exists, and we pro-
vide a method based on nonlinear least squares (NLS) com-
bined with the extended Kalman filter (EKF). A similar sce-
nario was considered in [7], though the method of [7] requires
additional measurements such as the angle-of-arrival (AOA)
at the MS, which is often infeasible to obtain in the absence of
a significant array aperture and a stationary reference orienta-
tion for the device. The method presented in our work only
assumes time and angle measurements made at multiple BS.

The rest of the paper is organized as follows. In Section 2,
we describe the system model and formulate the measurement
equations. Section 3 proposes a method to estimate the initial
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MS position based on NLS, and then Section 4 tackles the
problem of tracking subsequent changes in the MS position
using the EKF. Simulation results are presented in Section 5,
and Section 6 summarizes the paper.

2. SYSTEM MODEL
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Fig. 1. A localization scenario with k BS, each associated
with one scatterer relative to the MS.

In this work, we consider a k-BS cellular system that ob-
serves uplink signals from a single MS, as depicted in Fig. 1.
The location of all BS are known a priori. While the MS
uplink signal may arrive at each BS via many multipaths, we
assume that the path with the shortest delay is due to a single-
bounce from a scatterer in a fixed but unknown location, and
we assume that the TOA and AOA of this path at the BS can
be determined. Note that in general, this scatterer is different
for each BS. The TOA and AOA measurements at each BS are
then forwarded to a centralized controller where the MS loca-
tion estimate is obtained. We assume only signals from the
scatterers can be observed at the BS, and no LOS path exists.
As illustrated in Fig. 1, (x(i)

bs , y
(i)
bs ) and (x

(i)
s , y

(i)
s ) denote the

coordinates of BS i and the scatterer associated with BS i, re-
spectively. The position of the MS is denoted by (x(t), y(t)),
and (xms, yms) = (x(0), y(0)) is the initial position of MS.

Let θi be the AOA of the signal arriving at BS i from
scatterer i. Similarly, φi is the AOA of the signal path from
the MS to scatterer i. We have the following relationships
from simple geometry:
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The delay measurements are given by
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where τi(t) is the time delay from the MS to BS i due to the
associated scatterer.

We emphasize that only measurements of τi(t) and θi(t)
are made at BS i. All other parameters, including φi(t),
(x

(i)
s , y

(i)
s ), and (xms, yms), are unknown and must be es-

timated, which adds significant difficulty to the localization
problem.

3. POSITIONING VIA NONLINEAR LEAST
SQUARES

We divide the localization process into two steps. First we as-
sume that the MS moves at a constant velocity within a short
period of time, so that we can formulate it as an NLS prob-
lem and solve it numerically. Based on the initial estimate
obtained in the NLS step, we then use an extend Kalman filter
to track the MS’s movement, as discussed in the next section.

In this section, we discuss how the initial estimation can
be done via NLS. The constant velocity assumption leads to

(x(t), y(t))|t=n∆t = (xms + n∆tvx, yms + n∆tvy), (6)

where ∆t is the measurement interval, and vx and vy are the
velocity components in the x and y directions. Hence the
delay equation (5) can be rewritten as
√
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At time 0, equation (7) becomes
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For all n other than 0, subtracting (8) from (7) leads to
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We then introduce φi into equation (9). After some math-
ematical manipulations, we get
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When measurement noise is present, a NLS problem can be
formulated based on (10) for all i with vx, vy , xms, yms, x(i)

s ,

y
(i)
s , and φi as adjustable variables. At first glance, it appears

that the resulting NLS problem could be directly solved by
numerical optimization methods. However, our experiments
show that this problem has many local optima, and numerical
approaches often result in large estimation errors. An alterna-
tive approach is described below to address this problem.

A further observation on (10) reveals that if the squared
terms, (nvx∆t)2 and (nvy∆t)2, did not exist, the resulting
NLS problem could be regarded as a separable problem [8].
So we move the squared terms to the right hand side of the
equation, build up the NLS problem, and decompose the NLS
problem into H(α)β = γ, where α = [vx, vy, φ1, . . . , φk]

and β = [x
(1)
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s , y

(k)
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this as a pseudo-separable NLS problem because separability
in the strict sense requires γ to only depend on the measure-
ments, while in our case it also depends on the parameters to

be estimated. Since the numerical methods used to solve the
separable problem, e.g. the variable projection method [9],
are iterative in nature, we can use estimates of vx and vy from
the last iteration to evaluate the squared terms in γ for the next
iteration. Simulations show that this approximate algorithm
converges and results in acceptable estimation performance.

Putting everything together, we have
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which is in the decomposed form of H(α)β = γ. The def-
initions of mi, Pi and Qi are on the top of this page, where
mi ∈ R

(N+3)×1, Pi and Qi ∈ R
(N+3)×2. The total num-

ber of samples, N , is chosen offline before the positioning
process starts.

4. POSITIONING VIA EXTENDED KALMAN
FILTER

Once the initial estimations are obtained, we appeal to the
Kalman filter to track subsequent movement of the MS, under
which the constant velocity assumption is relaxed.

Let η(n) and w(n) be the transpose of
[

x(n) y(n) vx(n) vy(n) x
(1)
s (n) y(1)

s (n) · · · x
(k)
s (n) y(k)

s (n)
]
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Fig. 2. RMSE of MS position
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,

respectively. Also defineµ(n) = [τ1(n) θ1(n) · · · τk(n) θk(n)]
T

as the delay and AOA measurement vector, and z(n) =

[zτ1(n) zθ1(n) · · · zτk(n) zθk(n)]
T as the measurement noise

vector. Then the dynamic model of the Kalman filter is

η(n) =
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0 I2k
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where
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,

and the observation model is µ(n) = h (η(n))+z(n), where
h is a stack of equations (2) and (5). Due to the nonlinear
nature of h, we use the EKF [8] to do the tracking.

5. SIMULATIONS

Assume three BS located at (10, 10), (120, 20), and (80, 80)
in units of meters, with associated scatterers at (22, 5),
(108, 15), and (90, 68), respectively. The initial position of
the MS is (50, 30), and during the NLS stage, the MS moves
northbound at the speed of 3 km/hr for 5 meters. Except for
the coordinates of the BS, all other parameters are unknown
a priori and need to be estimated. Figs. 2-3 show the RMS
error of the MS position and velocity obtained by the NLS
algorithm as a function of the standard deviation of the delay
estimation error at each BS. The standard deviation of the
AOA estimation error is assumed to be 1◦. Fig. 4 shows the
performance of the EKF tracker once the initial MS position
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has been estimated using NLS, assuming a standard deviation
on the delay error of 20 ps. The initial estimate is in error by
around 15 m, but we see that the EKF is able to reduce the
error below 1 m during periods of straight-line motion.

6. CONCLUSION

In this paper, we have proposed a new method for localiz-
ing a mobile user in a pure NLOS environment using sev-
eral BS. An NLS method is proposed for the initial estima-
tion, followed by a EKF to track the subsequent movements
of MS. Compared to previous studies, only uplink measure-
ments made by the BS are required to localize the MS. Sim-
ulation results are provided to show the localization perfor-
mance of the methods. Possible areas of future work include
use of weighted or total LS to improve the accuracy of the
initial location estimate, and application of the idea to more
complicated environments with multiple scatterers per BS.
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