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ABSTRACT
Matched field processing is a powerful tool for accurately

localizing targets in dispersive media. However, matched
field processing requires a precise model of the medium
under test. In underwater acoustics, where matched field
processing has been extensively studied, authors often resort
to extremely detailed numerical models of the propagation
medium, which are computationally expensive and impracti-
cal for many applications. As an alternative, this paper uses
convex sparse recovery techniques to construct, directly from
measured data, an accurate model of a plate medium based on
its dispersion characteristics. From this data-driven model,
the Green’s function between two points can be readily pre-
dicted. We demonstrate the effectiveness of this model by
localizing a source in a dispersive plate medium. The results
visually illustrate our approach to significantly improve lo-
calization accuracy and reduce artifacts when compared to a
conventional narrowband technique.

Index Terms— Sparse recovery, matched field process-
ing, time reversal, localization, inverse problems

1. INTRODUCTION

Many applications in acoustics are concerned with locating
targets in complex media with multi-modal and dispersive
characteristics. In these media, a single propagating wave is
represented by a superposition of wave modes, each traveling
at a different velocity that varies as a function of frequency.
These types of waves include Love waves and Rayleigh waves
[1] in seismology, Lamb waves and pipe waves [2] in non-
destructive evaluation and structural health monitoring, and
Pekeris shallow water waves [3] in underwater acoustics.

For complex media, matched field processing [4, 5, 6] and
time reversal [7, 8] have been widely studied for high resolu-
tion localization. However, matched field processing requires
a detailed model of the environment and its Green’s func-
tion. In underwater acoustics, where it has been extensively
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studied, matched field processing usually requires a detailed
numerical model based on the wave equation [5]. However,
these models are usually expensive and impractical for most
applications. In time reversal, the Green’s function is instead
measured directly from the medium [7]. This too, however, is
impractical for many applications.

In this paper, we construct an accurate model of the
Green’s function for an aluminum plate directly from mea-
sured data through the use of sparse recovery techniques
developed for compressed sensing applications [9, 10, 11].
We accomplish this by transforming the data into a sparse
frequency-wavenumber representation that is invariant to
sensor positions on the surface of the plate. We refer to
this as sparse wavenumber analysis (SWA). This position-
invariant representation is then used to predict the Green’s
function between any points in the medium. We refer to this
as sparse wavenumber synthesis (SWS). We expand on our
previous work [12] by integrating this data-driven model with
matched field processing to localize a source in the dispersive
plate medium.

2. PROBLEM FORMULATION

In this section, we briefly discuss the general model used
to characterize Lamb waves, waves that propagate through
a plate. From this model, we show that Lamb waves are
characterized by their frequency-wavenumber representation,
which is invariant to sensor position. We then represent the
frequency-wavenumber representation as the solution to an
underdetermined linear inverse problem.

2.1. Lamb wave model

We consider a general model for the voltage, generated by
Lamb waves, measured by a collection of point-size piezo-
electric transducers on a single surface of a plate with a finite
height and unbounded length and width. We can approxi-
mately represent the voltage by the Green’s function X(r, ω),
which is dependent on angular frequency ω and the distance
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Fig. 1. Portion of the theoretical dispersion curves for the
zeroth order antisymmetric (A0), the zeroth order symmet-
ric (S0), and the first order antisymmetric (A1) modes of an
unbounded aluminum plate.

between any two transducers r, such that [12, 13, 14]

X(r, ω) =
∑
m

1√
km(ω)r

S(ω)Gm(ω) e−jkm(ω)r . (1)

In (1), X(r, ω) is a summation of wave modes, each with a
complex-valued, frequency-dependent amplitude Gm(ω) and
frequency-dependent wavenumber km(ω). The term S(ω) is
the known frequency response of the transmitted signal.

The function km(ω) is also known as the dispersion rela-
tion for the wave mode [2]. The collection of all dispersion
relations is known as the dispersion curves for the medium.
Fig. 1 illustrates an example portion of the theoretical disper-
sion curves for an aluminum plate, determined by numerically
solving the Rayleigh-Lamb equations [2].

Notice that from Gm(ω) and km(ω), which are invariant
of the sensor positions, we can synthesize the Green’s func-
tion for any distance. While the theoretical values of Gm(ω)
and km(ω) can be numerically obtained for Lamb waves, the
results are dependent on prior knowledge of the mediums ma-
terial parameters. These parameters are often unknown and
their values may vary with the condition of the sensors [15]
and changes in the environment, such as temperature [16].

2.2. Discrete, linear formulation

We now discretize the continuous model in (1) and represent
it as a discrete, linear system. To accomplish this, we assume
we observe N discrete wave measurements corresponding to
travel distances r = [r1, . . . , rN ]T . This is equivalent to dis-
cretizing X(r, ω) across N distances. We then uniformly dis-
cretize X(r, ω) across Q angular frequencies ω1, . . . , ωQ to
represent the measurements as an N ×Q matrix

X(r) = [X(ri, ωj)]ij . (2)

We also recognize that the dispersion relations km(ω) and
their associated amplitudes Gm(ω), for every m, can be rep-

resented as a single, two-dimensional function in frequency-
wavenumber (ω-κ) space

V (κ, ω) =

{
S(ω)Gm(ω) if κ = km(ω) for any m
0 otherwise .

(3)

We now uniformly discretize V (κ, ω) across Q angular fre-
quencies ω1, . . . , ωQ and across K wavenumbers κ1, . . . , κK

to form a K ×Q matrix

V = [V (κi, ωj)]ij . (4)

It can now be shown that the measurements X(r) and their
frequency-wavenumber representation V can be represented
by the discrete, linear relationship

X(r) = Dr(r)A(r)DkV (5)
A(r) =

[
e−jκjri

]
ij

(6)

Dr(r) = diag
[
r
−1/2
1 , . . . , r

−1/2
N

]
(7)

Dk = diag
[
κ
−1/2
1 , . . . , κ

−1/2
K

]
. (8)

In (5), the matrix A(r) is an N×K generalized Vandermonde
matrix, representing the complex exponential term in (1) at
discretized distances and wavenumbers. The matrices Dr and
Dk are N×N and K×K diagonal matrices, respectively, that
represent the geometric spreading factors in (1). Intuitively,
the matrix A(r) maps each column, or frequency, of V from
a distance domain onto a wavenumber domain.

3. SPARSE WAVENUMBER PROCESSING

Our goal now is to accurately estimate the frequency-wave-
number representation V that is invariant of all possible dis-
tances r. However, to obtain a sufficiently fine resolution in
the frequency-wavenumber domain, we usually require that
K > N . This implies that (5) represents an underdetermined
system and there exists an infinite number of solutions V.

3.1. Sparse wavenumber analysis

Although many possible solutions V exist, we know that the
true position-invariant solution exhibits a special property
over continuous space. That is, the continuous frequency-
wavenumber representation V (κ, ω) in (3) is sparse, or
mostly zeros. Therefore, we can assume the sparsest solution
for V is approximately the true solution.

Based on recent efforts in the study of compressed sens-
ing [10, 11], we know that we can obtain a sparse approximate
solution to (5) through an optimization known as basis pursuit
denoising [9, 17]. We use basis pursuit denoising rather than
the standard basis pursuit [9] because we assume our mea-
surements will be corrupted by noise. Therefore, we define
our basis pursuit denoising solution with a given r as

DkV = argmin
V

∥AV −D−1
r XDE∥2F + λ∥V∥1 . (9)
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Fig. 2. The frequency-wavenumber representation, computed
using basis pursuit denoising, of experimentally measured
Lamb waves.

In (9), the λ parameter is a chosen scalar that balances the
emphasis between the squared error term, which encourages
model fitness, and the ℓ1 norm, which emphasizes sparsity.
The matrix DE is a diagonal Q×Q matrix that normalizes the
columns of D−1

r X to have unit norm. This matrix is included
to improve the consistency of our choice of λ.

Note that (9) is equivalent to computing the basis pursuit
denoising solution for each column of V individually. This
is how V is computed in practice. However, we retain the
matrix notation here for conciseness.

Figure 2 shows an example frequency-wavenumber rep-
resentation V computed from experimental Lamb wave mea-
surements. We visually observe that this result closely resem-
bles the dispersion curves shown in Figure 1.

3.2. Sparse wavenumber synthesis

We can now use our frequency-wavenumber representation V
of the measurements to predict the Green’s function between
other points in the medium. This process is expressed by

X̂(r̂) = Dr(r̂)A(r̂)DkV , (10)

where X̂(r̂) represents the predicted Green’s functions for a
chosen collection of N̂ distances r̂ = [r̂1, . . . , r̂N̂ ]T .

4. MATCHED FIELD PROCESSING

We now consider a new collection of M measurements

Y = [X(ρi, ωj)]ij (11)

that represent waves originating from a single point source
and traveling unknown distances ρ = [ρ1, . . . , ρM ]T to M
sensors. Our objective is to locate this point source. To ac-
complish this task, we combine the predictive power of SWA
and SWS with matched field processing.

4.1. Sparse wavenumber processing

We integrate our predictions X̂(r̂) with matched field pro-
cessing by using the predictions as the Green’s function
model for the matched field processor. Therefore, the coher-
ent matched field location estimate [6], which is a minimum
squared error estimate, is defined by

ρ̂ = argmax
r̂

b(r̂) (12)

where b(r̂) is the coherent ambiguity function [6]

b(r̂) =

∣∣∣tr(YHX̂(r̂)
)∣∣∣2

∥X̂(r̂)∥2F
. (13)

This processing strategy is also known as time reversal [7]
or backpropagation because, intuitively, it propagates a time-
reversed replica of the received signals Y backward into the
medium, which is simulated by X̂(r̂).

4.2. Narrowband delay processing

For comparison, we also consider a conventional narrowband
Green’s function model. For multi-modal and dispersive me-
dia, localization is usually processed using a narrow band of
frequencies with a single dominating mode and an approxi-
mately constant group velocity [18, 19]. These methods usu-
ally use a simple Green’s function model based on delays

X̂(r̂) =
[
S(ωj)e

−jωj r̂i/vg

]
ij

, (14)

where S(ω) is the known transmission signal and vg is the
dominating wave mode’s group velocity. This Green’s func-
tion model is also integrated with the coherent matched field
processor in (12) and (13) to localize the source.

5. EXPERIMENTAL SETUP

We consider an aluminum plate specimen with a 1.22 m by
1.22 m by 0.2844 cm length, width, and thickness. Bonded
to the plate’s surface are 17 synchronized 0.7 cm by 0.8 cm
piezoelectric transducers capable of transmitting and receiv-
ing ultrasonic waves. Figure 3 illustrates the positions of
each sensor. To compute V, we collect ultrasonic measure-
ments corresponding to every combination of transmitter and
receiver pairs from 16 of the 17 sensors. This results in a total
of N = 272 measurements. We then collect M = 16 ad-
ditional measurements from the 17th sensor for localization.
Each sensor transmits a 10 µs long linear chirp signal with a
bandwidth from 0 Hz to 2 MHz.

Since our model in (1) considers an unbounded plate
while the experimental data is taken from a bounded plate,
the data will be corrupted by significant interference from
reflective boundaries. To reduce this interface when com-
puting V, we use a smooth time window to remove data
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Fig. 3. Sensor locations for the experimental plate setup. Di-
amonds indicate the sensors used to estimate the medium’s
Green’s function and to listen for sources. The cross indicates
the source to locate.

corresponding to a direct path group velocity of 2000 m/s or
less. Although significant interference remains, basis pursuit
denoising is generally robust to it [12]. To localize the 17th
sensor, we do not apply any time window to the data.

For implementing SWA, basis pursuit denoising is applied
with a parameter of λ = 0.4 and is implemented using the
convex optimization package CVX [20, 21].

6. RESULTS AND DISCUSSION

Figure 4(a) illustrates the ambiguity function b(r̂) for the
Green’s function model in (13), predicted by SWA and SWS
in (9) and (10). The frequency-wavenumber representation V
obtained to synthesize the Green’s function model is shown
in Figure 2 with K = 800 wavenumbers and Q = 800 fre-
quencies. The ambiguity function is computed from 40 fre-
quencies uniformly spread from 20 kHz to 800 kHz.

Figure 4(b) illustrates the ambiguity function b(r̂) for the
delay based Green’s function model in (14). The matched
field processor uses 40 frequencies uniformly spread from
260 kHz to 340 kHz. The model uses a group velocity of
5110 m/s, which was obtained from the slope of the second
dispersion curve in Figure 2.

Both plots show a 10 cm region of the plate. The light
gray circle in the center in each plot represents the center of
the 0.7 cm by 0.8 cm sensor of interest. The dark gray cross
in each plot denotes the maximum value across the shown
area, i.e. the estimated location of the source. Each plot is
normalized so that the maximum value is 0 dB.

By visual inspection, the SWA predictions achieve much
better localization. Our predictive model estimates the source
to be only 0.14 cm away from the center of the transducer
while the delay model exhibits an error of 3.37 cm. Figure
4(b) also shows that the delay model generates large artifacts
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Fig. 4. Ambiguity functions generated from (a) a predictive
sparse wavenumber analysis model and (b) a delay model.
Circles indicate the true source location. Crosses indicate the
matched field location estimates.

that may be mistaken for sources. In contrast, our predictive
model in Figure 4(a) displays only a few weak artifacts.

7. CONCLUSIONS

This paper demonstrates how sparse wavenumber analysis
and sparse wavenumber synthesis can predict the Green’s
function of a Lamb wave medium from a finite number of
measurements. These techniques achieve this by transform-
ing the data into a sparse frequency-wavenumber domain that
is invariant of sensor position.

We integrate this predictive Green’s function model with
a coherent matched field processor to localize an acoustic
source on an aluminum plate. When compared with a conven-
tional narrowband delay model of the Green’s function, the
predictive sparse wavenumber analysis model provides more
accurate localization and visually fewer artifacts. In future
work, we plan to investigate how these results vary with the
number of sensors and the degree of noise in the system.
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