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ABSTRACT

Traditional passive localization based on Time-Difference of
Arrival (TDOA) or Frequency-Difference of Arrival (FDOA)
usually involves several remote sensors, which require precise
time-synchronization and frequency-locking among them.
The need for such time or frequency alignment sometimes
poses a serious operational challenge on the system. In addi-
tion, it is often desired to keep the number of sensors to a min-
imum. In this work we look into the operationally-simplest
scenario in this context: using only two sensors, without any
synchronization or locking. When at least one of the sen-
sors, or the transmitting target, is moving at some consid-
erable speed, it is still possible to localize the target, based
on a few TDOA and / or FDOA measurements, by consider-
ing the time- and frequency-offsets as additional unknown pa-
rameters. We analyze the associated performance bound and
propose a Maximum Likelihood estimation approach. The at-
tainable accuracy and its dependence on geometry are demon-
strated numerically and in simulation.

Index Terms— TDOA, FDOA, passive localization, two
sensors, unsynchronized, unlocked.

1. INTRODUCTION

Passive localization systems aim to estimate the location of a
non-cooperating transmitter, based on reception of the trans-
mitted signal in several, spatially diverse sensors. Some meth-
ods rely on estimating localization-related parameters locally
at each sensor, and then combining these estimates into an es-
timate of the transmitter’s location. Such methods are based,
for example, on the Received Signal Strength (RSS) or Direc-
tion of Arrival (DOA) estimates, and do not require any joint
processing of the raw signals intercepted at the sensors. How-
ever, other, more advanced methods, require joint processing
of the signals intercepted at two or more sensors - these are
methods based, e.g., on Time-Difference of Arrival (TDOA),
Frequency Difference of Arrival (FDOA) or Direct Position
Determination (DPD, e.g., [1], [2]).

For TDOA-based methods, common practice requires
precise time-synchronization between sensors. Likewise, for
FDOA-based methods precise frequency-locking is required.

Obviously, for joint TDOA- and FDOA-based methods (and
also for DPD-based methods) both types of synchronization
are typically required. Such a requirement for precise time
/ frequency alignment (especially in the context of electro-
magnetic signals, as opposed to acoustic signals) often com-
plicates the system design, especially when the sensors are
remote and only a relatively low-bandwidth internal commu-
nication channel is available. Reliance on auxiliary systems
(such as a beacon signal at a known position, or GPS) for syn-
chronization and locking is sometimes not a desirable or fea-
sible option, either. Nevertheless, in some scenarios precise
time synchronization or frequency locking are not imperative.

For example, in the context of self-localizing wireless
sensor-networks (WSN), e.g., [3], several methods have been
proposed for non-synchronized TDOA-based self localiza-
tion, e.g. by Rydstrom et al. [4] and by Fan et al. [5] (based
on “differential TDOA” (dTDOA)), or by Xu et al. (based on
specially transmitted signals by one or more anchor nodes).
Joint synchronization and Time of Arrival (TOA) based pas-
sive localization is considered by Jean and Weiss in [6]. How-
ever, in such WSN-contexts the large number of sensors /
transmitters and the cooperative nature of at least some of the
transmitters play a key role which is absent in scenarios of
passive localization (by very few sensors) of a single non-
cooperating transmitter.

Similarly, uncertainties in the sensors’ positions in the
context of passive localization were addressed by Ho et al.
in [7] and [8]. Such uncertainties are partly equivalent to syn-
chronization uncertainties, but are of a different nature and
bear different effects on the resulting estimation accuracy.

In this work we consider the minimal required number of
sensors for passive TDOA/FDOA-based localization, namely
two sensors only. If at least one of the sensors is moving at
a sufficient (known) velocity, and the sensors’ positions are
known, then normally a single TDOA and FDOA measure-
ment between these two sensors is sufficient for localizing a
static transmitter, assuming precise time-synchronization and
frequency-locking of the sensors. Nevertheless, if several
consecutive TDOA/FDOA measurements (sufficiently sepa-
rated in time) are available in this scenario, the transmit-
ter’s location can also be estimated to within reasonable ac-
curacy even in the absence of any time or frequency align-
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ment between the two sensors. An only requirement is that
the time and frequency offsets between the sensors are con-
stant throughout the measurements period, so that these off-
sets can be considered as additional fixed (nuisance) parame-
ters. Such an assumption can be satisfied by using sufficiently
stable (slowly-drifting) but independent time and frequency
references at each sensor. A somewhat similar approach is
also possible when the sensors are static but the target is mov-
ing at a constant (but unknown) velocity.

In the following section we formulate the operational
model and the associated assumptions. Then, in Section 3
we derive the Cramér-Rao bound (CRB) on the localization
accuracy and outline an iterative Maximum Likelihood (ML)
estimation approach. The resulting performance, its relation
to the CRB and its dependence on the geometric parameters
are illustrated by simulation in Section 4. Conclusions are
summarized in Section 5.

2. THE CONSIDERED OPERATION MODELS

We assume that two sensors are available, whose known posi-
tions at time t are denoted p1(t) and p2(t), moving at known
velocities v1 and v2 (resp.) - which for simplicity are as-
sumed constant for the duration of the measurements period
(and one of which might be zero for a static sensor). The
transmitter’s unknown position is denoted q. In the basic sce-
nario we shall assume that the transmitter is static; However,
the model can be extended to the case of a transmitter which
is moving at a constant (unknown) speed, a scenario which
enables the use of two static sensors.

The difference vectors between the positions of the
sources and the transmitter at time t are given by

di(t; q) = q − pi(t) , i = 1, 2. (1)

and the respective ranges are given by

ri(t; q) = |di(t; q)| =
√
dT
i (t; q)di(t; q) , i = 1, 2. (2)

The resulting delay differences in the arrivals to the sensors
at time t is τ(t; q) = (r1(t; q) − r2(t; q))/c, where c is the
propagation speed1.

If the bandwidth of the transmitted signal is small relative
to its carrier frequency (denoted fc), the Doppler effect due to
the relative motion of the sensors with respect to (w.r.t.) the
transmitter reduces to a frequency-shift of the received carrier
frequency (with negligible effect on the signal’s waveform).
The frequency-shifts observed by the sensors (at time t) are
given by

νi(t; q) =
fc
c

· vT
i · di(t; q)

ri(t; q)
, i = 1, 2, (3)

and the difference between these shifts is given by ν(t; q) =
ν1(t; q)− ν2(t; q).

1299, 792, 458 [m/s] for electromagnetic waves in free space.

The TDOA and FDOA between the two sensors is es-
timated at N time-instances {tn}Nn=1, where it is assumed
that the duration of each measurement-interval is sufficiently
short, so that the TDOA and FDOA variations within each
interval are small (as opposed to their possible variations be-
tween intervals). In the absence of time-synchronization and
frequency-locking at the sensors, the estimated TDOA and
FDOA at the n-th interval are modeled (resp.) as

τ̂n = τ(tn; q) + δτ + wτ
n

ν̂n = ν(tn; q) + δν + wν
n (4)

(for n = 1, . . . , N ), where δτ and δν are the inherent,
unknown time-offset and frequency-offset between sensors,
resulting from the mis-synchronization and mis-lock, and
where wτ

n and wν
n are zero-mean estimation errors, which

are assumed to be Normally distributed and mutually statis-
tically independent in each measurement and between mea-
surements. Note that the assumption of independence of wτ

and wν in each measurement is justified, e.g., when the trans-
mitted signal is a Wide-Sense Stationary (WSS) process, but
may be unjustified otherwise, see [9]. However, we assume
WSS signals in here, hence the independence assumption.

As mentioned earlier, we assume that the time- and
frequency-drifts (if any) of the sensors are slow enough to jus-
tify the assumption of constant offsets δτ and δν throughout
the operation period of N consecutive measurements.

The vector θ of unknown parameters therefore consists of
the target’s fixed position q, as well as of the unknown offsets
δτ and δν , namely θ = [qT δτ δν ]

T .
Note that the sensors’ positions and velocities are as-

sumed to be precisely known, to within negligible errors. Ob-
viously, such knowledge implies a certain degree of time-
synchronization between the sensors and/or the central pro-
cessing station, so as to correctly translate the known veloci-
ties and initial positions into the sensors’ positions at time tn.
Nevertheless, the precision requirements for such knowledge
are far less stringent than the precision requirements for syn-
chronization for the purpose of bias-free TDOA estimation:
for the former an accuracy of the order of tens of milliseconds
would usually be sufficient (implying sensors’ location errors
of the order of centimeters), whereas for the latter accuracies
of the order of nanoseconds would usually be required.

In the next section we derive the CRB on the attainable
performance and outline an iterative ML estimation approach.

3. LOCATION ESTIMATION AND BOUNDS

The model (4) can be expressed in vector form as[
yτ

yν

]
=

[
hτ (θ)
hν(θ)

]
+

[
wτ

wν

]
, (5)

where yτ △
= [τ̂1 · · · τ̂N ]

T and yν △
= [ν̂1 · · · ν̂N ]

T are the con-
catenated TDOA and FDOA measurements (estimates), wτ
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and wν are the concatenated respective estimation errors, and
the elements of hτ (θ) and hν(θ) are (for n = 1, ..., N )

hτ
n(θ) =

1

c
[r1(tn; q)− r2(tn; q)] + δτ

hν
n(θ) =

fc
c

[
vT
1 d1(tn; q)

r1(tn; q)
− vT

2 d2(tn; q)

r2(tn; q)

]
+ δν . (6)

Due to the Gaussianity and independence assumptions re-
garding wτ and wν , the log probability distribution function
of the measurements yτ and yν is given by

log f(yτ ,yν ;θ) = c− 1

2σ2
τ

∥yτ−hτ (θ)∥2− 1

2σ2
ν

∥yν−hν(θ)∥2,

(7)
where c is an irrelevant constant and where σ2

τ and σ2
ν are the

variances of the TDOA and FDOA estimation errors wτ
n and

wν
n (resp.), which are assumed constant for all n.

The CRB on unbiased estimation of θ is given by the in-
verse of the Fisher Information Matrix (FIM), which in our
model takes the form

Jθ =
1

σ2
τ

N∑
n=1

(gτ
n)

Tgτ
n +

1

σ2
ν

N∑
n=1

(gν
n)

Tgν
n, (8)

where gτ
n

△
= ∂hτ

n(θ)/∂θ and gν
n

△
= ∂hν

n(θ)/∂θ are gradient
vectors, given as gτ

n = [γτ
n 1 0] and gν

n = [γν
n 0 1], with

γτ
n

△
=

∂hτ
n

∂q
=

1

c

[
dT
1 (tn)

r1(tn)
− dT

2 (tn)

r2(tn)

]
(9)

γν
n

△
=

∂hν
n

∂q
=

fc
c

[(
vT
1

r1(tn)
− vT

1 d1(tn)d
T
1 (tn)

r31(tn)

)

−

(
vT
2

r2(tn)
− vT

2 d2(tn)d
T
2 (tn)

r32(tn)

)]
(10)

(note that we omitted the explicit dependence of these terms
on θ, just for simplifying the notations). The FIM can there-
fore be expressed as

Jθ = N ·


1
σ2
τ
Rτ + 1

σ2
ν
Rν

1
σ2
τ
mτ

1
σ2
ν
mν

1
σ2
τ
mT

τ
1
σ2
τ

0
1
σ2
ν
mT

ν 0 1
σ2
τ

 , (11)

where

Rτ
△
=

1

N

N∑
n=1

(γτ
n)

Tγτ
n Rν

△
=

1

N

N∑
n=1

(γν
n)

Tγν
n (12)

mτ
△
=

1

N

N∑
n=1

(γτ
n)

T mν
△
=

1

N

N∑
n=1

(γν
n)

T . (13)

The CRB on unbiased estimation of q is given by the respec-
tive upper-left block of the inverse J−1

θ . Applying standard
block-matrix inversion, we observe that this block can also be
expressed as the inverse of Schur complement

Jq
△
= N ·

(
1

σ2
τ

Rτ +
1

σ2
ν

Rν

−
[
1

σ2
ν

mτ
1

σ2
τ

mν

] [ 1
σ2
τ

0

0 1
σ2
ν

]−1 [
1

σ2
ν

mτ
1

σ2
τ

mν

]T
=

N

σ2
τ

(
Rτ −mτm

T
τ

)
+

N

σ2
ν

(
Rν −mνm

T
ν

)
. (14)

Note that the “loss of information” due to the mis-
synchronization and mis-locking is reflected in the subtrac-
tion of the respective terms containing the products of means
mτm

T
τ and mνm

T
ν , since the FIM for the case of per-

fect time-synchronization and frequency-locking is obviously
given by the respective upper-left block of Jθ, denoted

J0
q

△
=

1

σ2
τ

Rτ +
1

σ2
ν

Rν ≽ Jq. (15)

This loss obviously depends on the specific geometry of the
operation scenario, through the departure of the mean gradi-
ent vectors mτ and mν from zero, which in turn depends
on the path taken by the moving sensor(s) w.r.t. the target.
Note further that each of the two components of Jq in (14)
reflects the information due to TDOA and FDOA measure-
ments (resp.) alone, and can yield the associated TDOA-only
or FDOA-only bound. However, since no hardware require-
ments on synchronization or locking are needed in order to
exploit both modalities, it seems wasteful to exploit just one.

The CRB on the mean square (matrix) error in unbiased
estimation of the transmitter’s location is given by the inverse
of Jq in the unsynchronized, unlocked case, and by the in-
verse of J0

q in the synchronized and locked case. In the case
of ML estimation, the asymptotic Normality and efficiency
of ML allows to translate the CRB matrix into a “confidence
ellipse” about the true location (containing the estimate with
some prescribed probability p).

In order to obtain the ML estimate of θ we need to max-
imize the log-likelihood in (7) w.r.t. θ. Obviously, this is a
Least-Squares problem which can be minimized iteratively,
e.g., using Gauss-Newton method (see, e.g., [10]). Starting

with some initial guess of θ, denoted θ̂
0
, the iterations pro-

ceed for k = 0, 1, 2, ... according to

θ̂
k+1

= θ̂
k
+ J−1

θ (θ̂
k
)·

·

[
1

σ2
τ

N∑
n=1

(gτ
n)

T (τ̂n − hτ
n(θ̂

k
)) +

1

σ2
ν

N∑
n=1

(gν
n)

T (ν̂n − hν
n(θ̂

k
))

]
,

(16)

such that gτ
n and gν

n are obtained using the expressions in (9),

(10), calculated at θ̂
k
, and are also used for calculating the

local FIM J−1
θ (θ̂

k
) using (8) or (11).

An apparently more appealing approach for obtaining the
ML estimate is to exploit the linear dependence of hτ (θ) and
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Fig. 1. A possible operation scenario: One static sensor and one moving
sensor, and the resulting CRB-based confidence ellipses at various locations.

hν(θ) on the nuisance parameters δτ and δν (resp.), substi-
tuting the closed-form minimizers w.r.t. these parameters into
the LS criterion. Consequently, the criterion would be ex-
pressed in terms of the parameters of interest q alone (such an
approach is taken, e.g., in [6]). However, it can be shown that
given the same initial guess for q, both iterative algorithms
would yield the same sequence of estimates of q. Therefore,
although the latter approach may sometimes offer numerical
or computational advantages (due to the reduced dimension-
ality), we shall not pursue that approach in more detail in here.

4. ANALYSIS AND SIMULATION RESULTS

We consider an operation scenario depicted in Figure 1 (in a
two-dimensional space), in which one static sensor is located
at (0, 0), and a second, moving sensor, is located at (10Km, 0)
at t = 0 and travels at a constant speed of 25[m/s] (90[Km/h])
at an angle α = 75o w.r.t. the y-axis. TDOA and FDOA
measurements (unsynchronized, unlocked) are taken every 10
seconds during a period of 50 seconds, amounting to N =
6 measurements. We assume that the estimation variances
of the TDOA and FDOA measurements are σ2

τ = (10[ns])2

and σ2
ν = (10[mHz])2 (resp.). The resulting CRB-based 90%

confidence-ellipses are depicted (blown-up by a factor of two
on the same scale, for visibility), for a grid of possible target-
locations, in Figure 1.

To demonstrate the dependence of the performance on the
geometry, we present in Figure 2 the dependence of the long
axis and short axis of the CRB-based 90% confidence ellipse
at location (8[Km], 8[Km]) on the direction of motion α of
the moving sensor. For comparison, we also present the same
for a fully time-synchronized and frequency-locked system,
observing roughly a ten-fold performance-loss (in terms of
the long axis) due to lack of synchronization and locking. Al-
though such a loss can be considered quite significant, the
simplicity gain in implementing an unsynchronized system
can often justify the compromised precision, as long as the
attainable accuracy is acceptable. Note that, as expected, in
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Fig. 3. A CRB-based 90% confidence-ellipse superimposed on the errors
in 1000 independent localization trials.

both cases the performance deteriorates when the moving sen-
sor moves directly towards or away from the target, since both
the Doppler sensitivity and the relative geographical diversity
of the sensor’s track are at their worst in this case.

In the last figure we show some simulation results demon-
strating the validity of the 90% confidence-ellipse. The el-
lipse is superimposed on the results of 1000 independent tri-
als, in which the ML estimate of transmitter’s location was
obtained as outlined in Section 3. The true location was at
(8[Km], 12[Km]), and the TDOA and FDOA measurements
were generated by applying random time and frequency bi-
ases in addition to the zero-mean, independent Gaussian er-
rors. The iterative estimation algorithm was initialized at
(5[Km], 5[Km]) in each trial.

5. CONCLUSION

We have demonstrated the ability to operate a passive TDOA
and FDOA based localization system with just two sen-
sors, with no requirement for precise time-synchronization or
frequency-locking between these sensors, as long as at least
one of the two (or the target) is moving. We provided explicit
expressions for the performance bound, and proposed an iter-
ative approach for ML estimation, which was demonstrated to
attain the bound in our simulation. The bound expression en-
ables to evaluate the expected performance in any considered
scenario, so as to decide whether the simplified configuration
is affordable in terms of the attainable accuracy.
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