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ABSTRACT

Recently it has been shown that the Multi-Sensor Probability
Hypothesis Density (MS-PHD) has some optimality proper-
ties in the regime of large number of sensors [1, 2], achieving
the same performance of the Bayes multi-sensor/multi-target
posterior in the Random Finite Set (RFS) framework [3].
However, when the number of sensors N is relatively large,
the traditional PHD filter loses its computational efficiency,
the complexity being exponential in N .

On the other hand, the complexity of the full Bayes pos-
terior is only linear in N , and this paper suggests an idea for
its computation using Sequential Monte Carlo (SMC) meth-
ods. The MS-PHD is then evaluated, and numerical exam-
ples show that it is possible to deal with a scenario where the
number of sensors is very large while targets, appearing and
disappearing, evolve in time.

Index Terms— Random finite sets, RFS, probability hy-
pothesis density, PHD, multiple sensors.

1. RELATED WORK AND CONTRIBUTIONS

The objective of target tracking is to estimate the states of
targets from measurement sets collected by some sensors at
each time step. This is a challenging problem since the tar-
get can generate multiple measurements which are not always
detected by sensors, and the sensors receive a set of spurious
measurements (clutter) not generated by the target.

A number of effective idea sets to track multiple targets
are of interest within the tracking and information fusion
communities, amongst which we will mention algorithms
such as Multiple Hypotheses Tracking (MHT) [4,5] and Joint
Probabilistic Data Association (JPDA) [4]; and such tools as
RFS [6, 7], and Point Process (PP) theories [8].

At a conceptual level, estimation of a multitarget state Θ,
from a collection of measurements Z, is fully accomplished
once that the multi-target posterior density f(Θ|Z) is made
available. Unfortunately, the evaluation thereof is usually
computationally expensive, essentially due to the possible
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high dimensionality of the multi-target state-space (T one-
dimensional targets means working in R

T ).
For this reason, a lot of effort in the multi-target field has

been devoted to the search of computationally efficient es-
timation algorithms. In this class a major role is currently
played by the so-called Probability Hypothesis Density [3],
which is the first-moment of the multi-target state, and, as
such, it is a more compact (and less informative) descrip-
tor than the full Bayes posterior f(Θ|Z). The PHD function
D(θ|Z) represents the expected density of targets at a given
point θ, so that its integral gives the average number of targets,
while its peaks can be used to estimate the target locations.
One appeal of the PHD is that it lives in a space which has the
(lower) dimensionality of the single-target state-space. In the
single sensor case, this key property has been used to derive a
very efficient algorithm for PHD filtering [11]. Unfortunately,
in the multi-sensor case, generalizing this approach implies a
growth in complexity which is exponential in the number of
sensors N , see [12]. It would involve enumerating and up-
dating the PHD under all combinations of measurement as-
sociation events, for example that both (of two measurements
at two sensors) measurements are false, that both come from
different targets, that one (or the other) is false and the other
true, and that both come from the same target. Attempts have
been made to find alternative solutions, amongst which we
mention: the iterated-corrector [12], which is only an approx-
imation of the MS-PHD, where a distortion is reintroduced
continually after a small number of updates; the partitioning
approach proposed in [10], which is effective in the simplest
case where many sensors exhibit non-overlapping Field of
Views (FOVs).

A fundamental point, which has been perhaps overlooked,
is that the complexity in evaluating the posterior f(Θ|Z)
grows instead only linearly with N , due to the conditional
independence among sensors. In this paper, we adopt this
viewpoint and propose a particle representation of the pos-
terior f(Θ|Z), generalizing the SMC approaches of [11]
and [13] , which both refer to the single-sensor case.

We thus show that multi-sensor/multi-target tracking is in
fact possible, though computationally demanding, provided
that the number of interacting targets is not too large, even
with a very large number of sensors.
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Fig. 1. Panel (a) target locations. Panel (b) target veloci-
ties. Panel (c) − (d) data observed by N = 5 and N = 50,
respectively, all sensors overlain.

Once the posterior has been computed, a number of esti-
mation algorithms can be in principle devised.

Among the many solutions, we here opt for using the MS-
PHD as our compact descriptor to estimation purposes. This
is suboptimal, and perhaps unnecessary, but it is made for two
reasons. First, recent results showed that the MS-PHD and the
full Bayes posterior present the same information about the
targets’ states as N gets large, namely, they become asymp-
totically efficient [1, 2]. Second, a feasible MS-PHD will at
last allow it to compete directly in data fusion scenarios where
the inference information stream is rich. We believe that this
should motivate the search of a hybrid approach to find com-
putationally efficient solutions, which should try to combine
the more compact description provided by the PHD w.r.t. the
posterior, without losing the advantages of sensors’ indepen-
dence.

2. PROBLEM FORMULATION AND DEFINITIONS

A multi-target system can be defined by the collection of indi-
vidual targets’ state (multi-target state) and the sensors’ mea-
surements (multi-target measurement). As the multi-target
state and multi-target measurement evolve in time, the num-
ber of individual targets and measurements may change, i.e.
the dimensions of the multi-target state and multi-target mea-
surement also evolve in time. Moreover, there is no ordering
for the elements of the multi-target state and measurement.

The multi-target state and multi-target measurement for
the sensor n ∈ {1, . . . , N} at time k are naturally represented
as finite subsets Θk and Zn

k respectively [3, 11, 13].
The multi-target dynamics and observation can be de-

scribed as follows. Given a realization Θk−1 at time k − 1,
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Fig. 2. Posterior distributions and MS-PHD at time scan k =
35 when two targets are present in locations {−5, 5}. Panels
(a)−(b)−(c) and (d)−(e)−(f) refer to N = 5 and N = 50,
respectively. In (a)−(d) the posterior is computed in the case
of a single target, while in (b)− (e) in the case of two targets.
Panels (c) − (f) show the asymptotic approximation of the
MS-PHD (4) and SMC approximation via Algorithm 1.

the multi-target state at time k is modeled by

Θk = Sk (Θk−1) ∪Nk (Θk−1) , (1)

where Sk (Θk−1) denotes the RFS of targets that have sur-
vived at time k, and Nk (Θk−1) is the RFS of new targets. All
aspects of multi-target motion such as the time-varying num-
ber of targets, individual target motion, target birth, spawning
and target interactions are taken into account.

Similarly, given a realization Θk at time k, the multi-
target observation at sensor n is modeled by

Zn
k = Y n

k (Θk) ∪ Cn
k , (2)

where Y n
k (Θk) represents the target-originated measure-

ments that have been detected while Cn
k denotes the RFS of

clutter, and then considering all sensor characteristics such as
measurement noise, sensor field of view (i.e., state-dependent
probability of detection) and false alarms. It is assumed that
the sensors’ data Zn

k are independent conditioned on the
target state Θk. The multitarget dynamic model (1)-(2) is
formally ruled by the multi-target Markov transition distribu-
tion fk|k−1 (Θk |Θk−1 ), and the joint likelihood among the

sensors
∏N

n=1 g (Z
n
k |Θk ), see further details in [2, 11].

The multi-sensor/multi-target problem concerns the es-

timation of Θk at k given Z1:N
1:k

def
=

(
Z1:N
1 , . . . , Z1:N

k

)
,
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Fig. 3. Left side, panel (a) shows the entire evolution of the MS-PHD filter for a number of sensors N = 5. Right side, panel
(a) shows the the MS-PHD for N = 50. Left and right side panel (b) show the true and the expected number of targets for
N = 5 and N = 50, respectively.

where Z1:N
k

def
=

(
Z1
k , . . . , Z

N
k

)
. The object of interest

in Bayesian estimation is the posterior probability density
fk|k

(
Θk|Z

1:N
1:k

)
.

3. PARTICLE MULTI-TARGET MULTI-SENSOR
FILTER

The single-target particle filter can be generalized to the
multi-target case using as particles the finite sets [11, 13],
i.e. the particles themselves can be of varying dimensions.
Assume that at time k − 1, a set of weighted particles{
w

(i)
k−1,Θ

(i)
k−1

}P

i=1
representing the multi-target posterior

is available

fk−1|k−1

(
Θk−1

∣∣Z1:N
1:k−1

)
≈

P∑

i=1

w
(i)
k−1δΘk−1

(
Θ

(i)
k−1

)
, (3)

where δA(·) is a delta function concentrated at A. The par-
ticle filter proceeds to approximate the multi-target posterior

at time k by a new set of weighted particles
{
w

(i)
k ,Θ

(i)
k

}P

i=1
following Algorithm 1. The number of sensors N has an im-
pact in terms of complexity, which is basically related to the

computation of the likelihood
∏N

n=1 g
(
Zn
k

∣∣∣Θ̃(i)
k

)
. Then the

algorithm has a linear complexity with respect to N . On the
other hand, the number of interacting targets should not be
too large, in order to avoid the curse of dimensionality in the
particle representation of the posterior.

At time k it will be possible to evaluate numerically the
MS-PHD indicated by Dk|k(θ), where θ has the same dimen-
sionality of the generic element in the set Θk.

From now on we shall focus on the case that the target
state is composed by a position variable θ and a velocity vari-

Algorithm 1 Particle Multi-Target Multi-Sensor Filter

At time k ≥ 1

• Sampling Step

- For i = 1, . . . , P , sample Θ̃
(i)
k ∼ q

(
·
∣∣∣Θ(i)

k−1, Z
1:N
k

)
,

set w̃(i)
k =

∏
N

n=1 g
(
Zn

k

∣∣∣Θ̃(i)
k

)
fk|k−1

(
Θ̃

(i)
k

∣∣∣Θ(i)
k−1

)

q
(
Θ̃

(i)
k

∣∣∣Θ(i)
k−1,Z

1:N
k

) w
(i)
k−1.

- Normalise weights:
∑P

i=1 w̃
(i)
k = 1.

• Resampling Step

- Resample
{
w̃

(i)
k , Θ̃

(i)
k

}P

i=1
to get

{
w

(i)
k ,Θ

(i)
k

}P

i=1
.

able θ̇, and the sensors collect measurements of the targets’
positions.

3.1. Approximation in the Regime of Large Number of
Sensors

For N large enough, the posterior density is expected to be
multimodal, exhibiting different peaks approximately located
around the true targets’ positions, with a spread decreasing
as the number of sensors increases. Consequently, the MS-
PHD has a similar shape, i.e., it is concentrated around the
true targets’ positions.

The above behavior is indeed predicted by the theoreti-
cal asymptotic results provided in [1, 2]. To elaborate, let us
consider a one-dimensional scenario and introduce the vector
of ordered targets’ positions, namely, [ξ1,k, ξ2,k, . . . , ξTk,k],
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and the Clairvoyant Maximum Likelihood (C-ML) estimator
that knows in advance the correct number of targets Tk, say[
ξ̂1,k, ξ̂2,k, . . . , ξ̂Tk,k

]
. The term ξ̂i,k converges to the true

target position ξi,k as N increases, and the error ξ̂i,k − ξi,k
is approximately a Gaussian random variable with a variance
σ2
i,k/N , where σ2

i,k is the ith diagonal element of the inverse
of the single-sensor FIM Ik at step k.

The large-sample shape of the MS-PHD related to the tar-
gets’ positions is that of a Gaussian mixture, whose compo-
nents are centered in the C-ML estimator points and have vari-
ances ruled by the Fisher information terms [1, 2]

Dk|k (θ) ≈

Tk∑

i=1

√
N

2πσ2
i,k

exp




−N

(
θ − ξ̂i,k

)2

2σ2
i,k





. (4)

Note that integrating (4) over the surveillance region we ob-
tain the true number of targets Tk.

4. COMPUTER EXPERIMENTS

A target state is composed of position θ and velocity θ̇ vari-
ables. The targets evolution is modeled according to a nearly
constant velocity. The birth/death process is modeled as Pois-
son with a constant rate, new targets are spread uniformly in
the state space. The test scenario lasts 50 time steps and in-
volves 6 targets (which appears and disappears), targets po-
sitions and velocities are depicted in the uppermost subplots
of Figure 1 (a) − (b). Two cases are analyzed with N =
5, 50 sensors which provide measurements with an indepen-
dent Gaussian noise on the variable θ and false alarms uni-
formly spread inside the surveillance region [−50, 50]. The
sensors’ contacts are superimposed in the lowermost subplots
of Figure 1 (c)− (d). The contacts are given by the measure-
ments of a targets’ positions, if detected, and clutter.

In Figure 2 the posterior distributions and the MS-PHD of
the targets’ positions, evaluated using Algorithm 1, are rep-
resented at time scan k = 35. Panels (a) − (b) − (c) and
(d) − (e) − (f) refer to N = 5 and N = 50, respectively.
There are two targets, Tk = 2, and their true positions are
in {−5, 5}. In (a) − (d) the argument of the posterior is a
singleton {θ} while in (b) − (e) has two elements {θ1, θ2}.
The posterior density has a multimodal shape and in particu-
lar has a significant mass around all the label permutation of
targets’ positions, i.e. around the points (θ1, θ2) = (−5, 5)
and (θ1, θ2) = (5,−5). A very good agreement with the
asymptotic approximation of the MS-PHD (4) is achieved,
see panels (c) − (e). As it is expected the shape of the MS-
PHD and the posterior is peakier when the number of sensors
is larger, or in other words when N is larger the estimation
performance is better.

The left and right uppermost plots of Figure 3 show the
entire evolution of the MS-PHD filter for N = 5 and N = 50,
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Fig. 4. Panel (a) two targets in locations {(−1, 0), (3, 2)}.
Panel (b)− (c) data observed by N = 5 and N = 50, respec-
tively, all sensors overlain.
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Fig. 5. MS-PHD in a 2D scenario for a number of sensors
N = 5, 50.

respectively. The lowermost plot of Figure 3 shows the ex-
pected number of targets (given the observation), computed
integrating the MS-PHD over the surveillance region, this ex-
hibits quite good performance for the estimation of the num-
ber of targets.

The extension to a 2D scenario, with target locations
(θx, θy), is given in Figure 4 and Figure 5. The MS-PHD is
peakier when the number of sensors is larger, see Figure 5,
indeed for N = 5 it is possible to localize the targets in the
region close to the origin but not to distinguish one from the
other, while for N = 50 the targets’ locations are estimated
with a good accuracy.

5. CONCLUSION

Sequential Monte Carlo methods are used to compute the full
Bayes posterior of the targets’ states for tracking purposes.
This may be the first practical exact MS-PHD, and allows us
finally to see the idea at work. In addition, it is shown that the
the theoretical limit performance predicted by [1, 2] is effec-
tively met.
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