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ABSTRACT

We deal with the positioning problem based on two-way time-of-

arrival (TW-TOA) measurements in asynchronous wireless sensor

networks. The optimal estimator for this problem poses a difficult

global optimization problem. To avoid the drawbacks in solving the

optimal estimator, we use approximations and derive linear models,

which facilitate efficient solutions. In particular, we employ the least

squares method and solve a general trust region subproblem to find a

coarse estimate. To further refine the estimate, we linearize the mea-

surements and obtain a linear model which can be solved using reg-

ularized least squares. Simulation results illustrate that the proposed

approaches asymptotically attain the Cramér-Rao lower bound.

Index Terms– Positioning, two-way time-of-arrival (TW-TOA),

trust region subproblem, regularised least squares.

1. INTRODUCTION

Range based positioning using two-way time-of-arrival (TW-TOA)

measurements is a popular technique in the literature. Despite its

robustness against an unknown clock offset, TW-TOA based posi-

tioning suffers from imperfect clock skews and unknown processing

time, so-called the turn-around times [1, 2].

A huge number of algorithms have been considered in the litera-

ture to address the positioning problem based on TW-TOA measure-

ments in fully or partially synchronized networks. For example, the

maximum likelihood estimator [3], linear least-squares [4], squared-

range least squares [5], projection onto convex sets [6–8], and con-

vex relaxation techniques [9, 10] have been proposed for synchro-

nized networks. Assuming an unknown turn-around time, authors

in [11,12] formulated the positioning problem based on TW-TOA as

nonconvex programming and introduced suboptimal estimators to

solve the problem. A few researchers tackled the positioning prob-

lem in asynchronous networks and proposed various solutions. For

instance the authors in [1] studied the TW-TOA based positioning

problem when imperfect clock skew is present in both target and ref-

erence nodes and employed a least squares approach. The previously

proposed approaches need modifications to be effectively applied to

the positioning problem in which clock skew and turn around times

are also unknown.

In this study, we consider the positioning of a single target node

based on TW-TOA measurements for an asynchronous network. A

target node transmits a signal to a reference node located at a known

position and the reference node responds to the received signal after
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an unknown turn-around time delay. As it is common in the litera-

ture, we assume that the reference node measures the turn-around

time by a loop back test and transmits the estimate to the target

node [13, 14]. The target node then computes the round-trip delay

based on an estimate of the turn-around time. The optimal estimator

for the positioning problem in the presence of unknown clock skews

in the target and reference nodes involves nonconvex optimization

and therefore difficult to solve. Using approximations and prepro-

cessing on data, we reformulate the problem by a linear model in

which the elements of the unknown parameter vector are dependent

on each other. We then employ two techniques based on general trust

region subproblem and least squares to solve the problem. With an

estimate of the clock skew and the location, we use the measurement

once more and linearize it using the first order Taylor series expan-

sion and obtain a linear model. Then, we refine the estimate using

regularized least squares. Note that besides different approaches in

formulating the problem in [1] and the current study, the technique

proposed in [1] is similar to the linear least squares estimator pro-

posed in the coarse estimation step, except for a correction term in-

troduced in this study. In fact, the fine step introduced in this work

improves the performance of the estimator proposed in [1]. More-

over, the trust region subproblem method is applied for the first time

in this study to the TW-TOA based positioning in the presence of

clock skews. Simulation results show that the proposed approaches

asymptotically attain the Cramér-Rao lower bound.

In summary the main contributions of this study are:

• the MLE for the approximate TW-TOA measurement model

to find the location and clock skew of the target node;

• two suboptimal estimators based on squared-range least

squares to provide coarse estimates of the location and the

clock skew;

• a refining approach to improve the coarse estimate provided

by the suboptimal estimators.

2. SYSTEM MODEL

Consider a two dimensional network with N reference (anchor)

nodes located at known positions ai = [ai,1 ai,2]
T ∈ R

2,

i = 1, ..., N . Suppose that one target node is placed at unknown

position x = [x1 x2]
T ∈ R

2. We assume that the target node

estimates the distance to a reference node by performing a TW-TOA

measurement. That is, the target node sends a signal to a reference

node and the reference node responds to the received signal after a

turn-around time. We assume that the clocks of sensor nodes follow

an affine model [15, 16]. Therefore, the TW-TOA measurement

between the target and reference node i can be expressed as [1]

zi = f

(

di
c

+
Ti

2

)

+
ni

2
, (1)
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where f is the clock skew of the target node, di = ‖x − ai‖ is the

Euclidean distance between reference node i and the point x, c is

the propagation speed, and Ti is the turn around time at reference

node i in response to the signal transmitted by the target node, ni

is the TOA estimation error, which is commonly modeled as a zero-

mean Gaussian random variable, i.e., ni ∼ N (0, σ2
i ). One way to

deal with the unknown parameter Ti is to jointly estimate it along

with the location of the target node [11]. It can also be estimated by

reference node i using a loop back test and is sent back to the target

node [14]. In this study, we consider the latter approach. Suppose an

estimate of Ti is expressed as

T̂i = fiTi + ǫi (2)

where fi and ǫi are the clock skew and the TOA estimation error,

respectively, at reference node i. We assume that ǫi is a zero mean

Gaussian random variable, i.e., ǫi ∼ N (0, γ2
i ).

Combining (1) and (2), we arrive at the following model:

zi − f
T̂i

2
= f

di
c

+
Ti

2
(f − ffi) +

ni

2
− f

ǫi
2
. (3)

We can further simplify the model in (3) as follows. Since in practi-

cal scenarios clock skews f and fi are close to one [16], the second

term at the right-hand-side of (3) is negligible for a large network in

which the turn around time is small. Then, we can approximate the

model in (3) as

zi ≃ f
di
c

+ f
T̂i

2
+

ni

2
− f

ǫi
2
. (4)

Throughout the paper, we work with model in (4). We collect the

measurements in vector z as follows:

z = [z1 . . . zN ]T . (5)

Based on the model in (4) besides the position of the target node,

one also needs to estimate the clock skew f .

3. MAXIMUM LIKELIHOOD ESTIMATOR

In order to obtain the MLE for joint estimation of the position and

clock skew of the target node, the following optimization problem

needs to be solved [17]:

[f̂ x̂
T ] = arg max

x∈R2, f∈R

pZ(z; f,x), (6)

where pZ(z; f,x) is the probability density function (pdf) of vector

z indexed by the vector [f xT ]. Since the TOA errors are assumed

to be independent and identically distributed random variables, the

pdf of z can be calculated from (4) and (5) as

pZ(z; f,x)

=

N
∏

i=1

√

8

π(σ2
i + f2γ2

i )
exp

(

−
2(zi − fdi/c− fT̂i/2)

2

(σ2
i + f2γ2

i )

)

.

(7)

After some manipulations, the MLE formulation can be expressed

as

[x̂T f̂ ]T = argmin
x∈R2, f∈R

N
∑

i=1

4

(σ2
i + f2γ2

i )

(

zi − f
T̂i

2
− f

di
c

)2

+ ln(σ2
i + f2γ2

i ). (8)

As observed from (8), the MLE problem is highly nonconvex and

therefore is difficult to solve. In the next section, we propose two

suboptimal estimators followed by a refining step to solve the posi-

tioning problem in the presence of an unknown clock skew.

4. PROPOSED TECHNIQUES

In this section, we propose a two step estimation approach to find

estimates of the target location. In the proposed procedure, we first

obtain coarse estimates of the target location. In the next step, we

refine the estimates.

4.1. Coarse estimate

In this section, we propose two techniques based on squared-range

least squares and obtain a coarse estimate. We first divide both sides

of (4) by f and express the model as

ziα−
T̂i

2
=

di
c

+
ni

2
α−

ǫi
2
, (9)

where α = 1/f . In the following, the model in (9) is employed

to derive the proposed suboptimal estimators. We assume that the

measurement noise ni/2α− ǫi/2 is small compared to di/c. Then,

taking the square of both sides of (9) and dropping the small terms

yield

(ziα)
2 +

T̂ 2
i

4
− ziT̂iα ≃

1

c2
(xT

x− 2aT
i x+ ‖ai‖

2) + νi, (10)

where νi = di(αni − ǫi)/c.

4.1.1. General trust region subproblem (GTR)

We first apply a weighted least squares criterion to the model in (10)

and obtain the following minimization problem:

minimize
y

‖W−1/2(Ay− b)‖2

subject to y
T
Dy+ 2fTy = 0, (11)

where matrices W, A, and D, and vectors b , f , and y are defined

as

A ,







1

c2
− 2

c
a1 −z21 z1T̂1

...
...

...
...

1

c2
− 2

c
aN −z2N zN T̂N






, f ,











− 1

2

0
0
− 1

2

0











,

D ,











0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1











, b ,









− 1

c2
‖a1‖

2 +
T̂2

1

4

.

..

− 1

c2
‖aN‖2 +

T̂2

N

4









,

W = diag
(

d21(σ
2
1 + f2γ2

1), . . . , d
2
N (σ2

N + f2γ2
N)
)

,

y , [‖x‖2 x
T α2 α]T . (12)

The problem in (11) is called a generalized trust region subproblem

(GTR) [18] and can be solved exactly. It has also been known that

the GTR has zero duality gap and the optimal solution can be ex-

tracted from the dual solution [18–20]. A necessary and sufficient

condition for y∗ to be optimal in (9) is that there exist a µ ∈ R [19]

(AT
W

−1
A+ µD)y∗ = (AT

W
−1

b− µf),

(y∗)TDy
∗ + 2fTy∗ = 0, (AT

W
−1

A+ µD) � 0. (13)

Under the conditions in (13), the solution to the problem in (11) is

given by

y(µ) = (AT
W

−1
A+ µD)−1(AT

W
−1

b− µf). (14)
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In such a situation to find µ, we simply replace (14) into constraint

yTDy + 2fTy = 0, i.e.,

φ(µ) = y
T (µ)Dy

T (µ) + 2fTy(µ) = 0, µ ∈ I (15)

where the interval I consists of all µ such that ATW−1A+ µD � 0.

The interval of I is given by [5] I = (−1/µ1,∞) with µ1 repre-

senting the largest eigenvalue of (ATW−1A)−1/2D(ATW−1A)−1/2

[18]. In summary, the solution to (11) is obtained as follows:

• Use a bisection search to find a root of φ(µ) = 0, say µ∗.

Note that φ(µ) is a strictly decreasing function [18].

• Replace µ∗ into (14) to obtain y∗ = y(µ∗).

• Estimate the unknown location as x̂ = [y∗]2:3, with [v]i:j
denoting the ith to the jth elements of vector v.

Note that since the weighting matrix W depends on the un-

known distance di, we first replace W with the identity matrix and

find an estimate of the location. Then, we form an approximate

weighting matrix from (12) with estimates of di and f from the first

iteration. In fact the procedure explained in the bullet list above is

executed twice.

4.1.2. Linear Least squares (LLS)

In this section we obtain an LLS solution similar to those in [12,21].

We consider the following linear model (obtained from (10)):

b = Ay + ν, (16)

where ν = [ν1 . . . νN ]T and A,y, and b are given in (12). The

unconstrained least squares solution to (16) assuming that A has full

column rank is given by [17]

ŷ = (AT
W

−1
A)−1

A
T
W

−1
b. (17)

The covariance matrix of ŷ can be computed as

Cŷ = (AT
W

−1
A)−1. (18)

Note that for a large network, matrix A is ill-conditioned [12].

Then, we can use the approach introduced in [12, 22]. In order to

further improve the estimate consider the following relations:

[y]1 = ‖x‖2 + ξ1, [y]4 = α2 + ξ4,

[y]2 = x1 + ξ2, [y]3 = x2 + ξ3, [y]5 = α+ ξ5, (19)

where ξ = [ξ1 . . . ξ5]
T is the estimation error vector. Assuming

small estimation errors, we take the squares of the last three equa-

tions in (19) and obtain the following expressions:

[y]22 ≃ x2
1 + 2x1ξ2, [y]23 ≃ x2

2 + 2x2ξ3, [y]5 ≃ α2 + 2αξ5,
(20)

Based on (19) and (20), we obtain a linear model as

h = Bθ +Pξ, (21)

where

B =







1 1 1
1 0 0
0 1 0
0 0 1






, P =







1 0 0 0 1
0 2x1 0 0 0
0 0 2x2 0 0
0 0 0 2α 0







h =
[

[y]1 + [y]4 [y]22 [y]23 [y]24
]T

, θ = [x2
1 x2

2 α2]T . (22)

The least squares solution to (21) is given by

θ̂ = (BT
C

−1

θ̂
B)−1

B
T
C

−1

θ̂
h, (23)

where the covariance matrix Cθ can be computed as

C
θ̂
= PCŷP

T . (24)

To compute matrix P we use the estimate x̂ = [ŷ]2:3 obtained in

(17) instead of unknown vector x.

Finally the location estimate can be obtained as

x̃i = sgn(yi+1)

√

|θ̂i|, i = 1, 2, (25)

where sgn denotes the signum function.

4.2. Fine estimate

In this section, we first refine the estimate of the clock skew. Assum-

ing an estimate of the location x̄ (x̄ = x̂ from GTR or x̄ = x̃ from

LLS), an estimate of the clock skew can be obtained from (4) (using

the method of moment [17]) as follows:

f̂ =

∑N
i=1

zi
∑N

i=1
d̄i/c+ T̂i/2

, (26)

where d̄i = ‖x̄ − ai‖. Now applying the first order Taylor series

expansion about x̄ and assuming an estimate of the clock skew given

in (26), we get the following expression:

zi ≃ f̂
d̂

c
+ f̂

T̂i

2
+ g

T
i ∆x+

ni

2
− f̂

ǫi
2
, (27)

where gi = f̂(x̄− ai)/(cd̄i), and ∆x = x− x̄. Thus, we arrive at

the following linear model to estimate the error of estimation ∆x:

t = G∆x+ ϑ, (28)

where ϑ = [n1/2−f̂ ǫ1/2 . . . nN/2−f̂ ǫN/2]T , G = [gT
1 . . .gT

N ]T ,

and t = [z1 − f̂(d̄1/c+ T̂1/2) . . . zN − f̂(d̄N/c+ T̂N/2)]T .

The assumption in deriving the model in (28) is that the error of

estimation, i.e., ∆x, is small enough. We take this assumption into

account and apply the regularized least squares (Tikhonov regular-

ization technique) to find an estimate of the ∆x as [23]

∆̂x = (GT
J
−1

G+ λI2)
−1

G
T
J
−1

t, (29)

where J = diag(σ2
1+ f̂γ2

1 , . . . , σ
2
N+ f̂γ2

N) and λ defines a trade-off

between (G∆x− t)TJ−1(G∆x− t) and ‖∆x‖2 terms [22].

Finally, the updated estimate is obtained as

ˆ̄x = x̄+ ∆̂x. (30)

A note on complexity analysis: The worst-case complexity for

the MLE using the Gauss-Newton method considering a good initial

point can be computed as O(KGNN3), where KGN is the number

of iterations (usually less than 50). The corresponding LLS needs

an order of O(52N) to implement. For the GTR, we need to use

a bisection search to solve (15), which is the most complex part of

the algorithm. Suppose the bisection search takes k2 steps (usually

20 to 30), then the total cost of the the proposed approach can be

approximated as O(36k2 + 52N). Note that we need to run the

LLS and GTR twice. Hence, the corresponding complexities are
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Table 1. Complexity and average running time of different ap-

proaches.
Method Complexity Time (ms)

MLE (for good starting point) O(k1N3) 196

LLS(coarse) O(52N) 0.36

GTR(coarse) O(36k2 + 52N) 5.5

Fine step O(14N) 0.21
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Fig. 1. The RMSE of difference approaches for (a) 7 reference nodes

and (b) 8 reference nodes.

increased by a factor of two. The complexity of the fine step can be

computed as O(14N).
We have also measured the average running time of 500 realiza-

tions for a network consisting of seven reference nodes as considered

in Section 5. The algorithms have been implemented in Matlab on

MacBook Pro (Processor 2.3 GHz Intel Core i7, Memory 8 GB 1600

MHz DDR3). The MLE is implemented by Matlab function lsqnon-

lin [24] initialized with the true values of the target position and the

clock skew. The complexity and average running time are shown in

Table 1. From the table, we see a reasonable cost of the proposed

approaches for practical implementation.

5. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed ap-

proaches through computer simulations. We consider a 800 by 800
square meters area and a number of reference nodes that are located

at fixed positions a1 = [400 400], a2 = [400 − 400], a3 =
[−400 400], a4 = [−400 − 400], a5 = [400 400], a6 =
[0 400], a7 = [−400 0], and a8 = [0 −400]. In the simulations, we

pick the first n reference nodes, i.e., a1, . . . ,an. One target node

is randomly distributed inside the area. The clock skew and turn-

around time are uniformly drawn from [0.99 1.01] and [0 0.001]
ms, respectively. We compare the proposed techniques with the

MLE in (8) and the Cramér-Rao lower bound (CRLB) computed

in Appendix A. In the simulation, we assume that σi = γi = σ
for i = 1, . . . , N . In addition, we set λ = 0.02.

Fig. 1 shows the root-mean-squares-errors (RMSEs) of location

estimaties for different approaches versus the scaled standard devi-

ation of noise, i.e., cσ, for seven and eight reference nodes. It is

observed that the both of the proposed approaches attain the CRLB

for low standard deviations of noise. It is also seen that the GTR

based approach achieves better performance than the LLS.

6. CONCLUSIONS

In this paper, we have studied TW-TOA based positioning in the

presence of imperfect clock skews and unknown turn-around times.

Since the optimal ML estimator is highly nonconvex and difficult to

solve, we have used approximations and derived a linear model in

which the elements of the unknown vector are dependent on each

other. We have applied two techniques based on the general trust

region subproblem and the least squares approach. To improve the

estimate further, we have linearized measurements around the esti-

mate and applied a regularized least squares approach. Simulation

results show that the proposed techniques can attain the CRLB for

low standard deviations of noise.

A. CRAMÉR-RAO LOWER BOUND (CRLB)

Based on (7), the elements of the Fisher information matrix can be

computed as [17]

FJJ =− E

[

∂2 ln pZ(z; f,x)

∂x2
J

]

=

N
∑

i=1

4f2/c2

(σ2
i + f2γ2

i )

(xJ − ai,J )
2

d2i
, J = 1, 2,

F12 = F21 =− E

[

∂2 ln pZ(z; f,x)

∂x1∂x2

]

=
N
∑

i=1

4f2/c2

(σ2
i + f2γ2

i )

(x1 − ai,1)(x2 − ai,2)

d2i
,

F33 =− E

[

∂2 ln pZ(z; f,x)

∂f2

]

=
N
∑

i=1

4(T̂i/2 + di/c)

(σ2
i + f2γ2

i )
+ 4f2 γ2

i

(σ2
i + f2γ2

i )
2

F3J = FJ3 = −E

[

∂2 ln pZ(z; f,x)

∂xJ∂f

]

=
N
∑

i=1

f/c(T̂i/2 + di/c)

σ2
i (1 + f2)

xJ − ai,1

di
, J = 1, 2.

(31)

Then, the CRLB, which is a lower bound on the variance of any

unbiased estimator, is given by

E{‖x̂− x‖2}

≥
F33(F22 + F11)− (F 2

32 + F 2
13)

F33(F11F22 − F 2
12) + (2F31F23F12 − F22F 2

13 − F11F 2
23)

.

(32)
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