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ABSTRACT

This paper presents a track-before-detect algorithm based on the par-
ticle filter for simultaneously detecting and tracking a single target
with nearly constant velocity. The measurement data available to
the algorithm is the raw direction-of-arrival spectrum of the received
wideband signals at a single observation platform. The proposed
method does not require prior information on the target existence
probability and it is capable of detecting a target of very low signal-
to-noise ratio (−30dB). Simulation results show that the proposed
algorithm demonstrates good performance in detecting and tracking
a target with reasonably low errors in the estimated target states over
the observation period.

Index Terms— Track-before-detect, modal analysis, minimum
variance distortionless response, particle filter

1. INTRODUCTION

The track-before-detect (TBD) approach [1, chapter 11] aims to si-
multaneously detect and track a target using raw (unthresholded)
measurement data [2, 3]. It is particularly useful for targets of low
signal-to-noise ratio (SNR) for example in optical or infrared appli-
cations [4, 5] and radar systems [6, 7]. Most TBD algorithms were
designed based on an optical sensor model which produces a se-
quence of two-dimensional grey-scale images [8–10]. However, this
sensor model may not be applicable in several applications such as
sonar [11, 12] and acoustic source localization systems [13].

Recently, sequential Monte Carlo methods, known as particle
filters [14], have become popular in recursively tracking targets un-
der the Bayesian framework for nonlinear/non-Gaussian systems. It
has also been designed for TBD problems and has been found to
be able to detect and track targets of low SNR [15–18]. However,
these methods require a statistical model for each pixel of the re-
ceived measurements, making the algorithms computationally com-
plex. Besides that, they rely on the target appearance/disappearance
probabilities which may not be known a priori in practice.

In this paper, we propose a TBD algorithm for a single target
under the particle filtering framework with the following properties:

• The received wideband signals at the sensor array on a sin-
gle observation platform undergo a modal preprocessing step
following the description recently presented in [19]. It trans-
forms the signals received at different sensor locations into
signals at different modes as described by the Jacobi-Anger
expansion of the wavefield [20].

• The TBD algorithm takes as measurement data the direction-
of-arrival (DOA) spectrum of the modal preprocessed signals.

• The algorithm proposed redistribute the particles at each re-
cursion so that the particles are concentrated in the area of
high likelihood of target existence.

• The target existence probability is estimated directly from the
measurements obtained and any prior knowledge is not re-
quired.

We use the following notations in this paper: E{·} is the expec-
tation operator, (·)# is the Moore-Penrose pseudo inverse of a ma-
trix, [·]T denotes vector or matrix transpose and (·)H denotes com-
plex conjugate transpose.

2. SYSTEM MODEL

We consider a two-dimensional (2D) detection and tracking system
where wideband signals emitted from a single target are received by
a sensor array on an observation platform. It is assumed that the tar-
get is located on the same plane as the sensor array. Besides that,
it is assumed that at most one target could possibly exist at a given
time instance, and if the target exists, it moves with a nearly constant
velocity and it corresponds to the mainlobe of the DOA spectrum of
the received signals. In this paper, we assume that the receiving
sensor array is designed following the method proposed in [19] and
the signals received would go through a modal preprocessing step
before further processing for detecting and tracking the target is car-
ried out. During the modal preprocessing step, the received signals
at different sensor locations would be transformed into signals at
different modes as described by the Jacobi-Anger expansion of the
plane wave equation, so that they can be further processed using nar-
rowband techniques. The details of the measurement model and the
target dynamics model are described below.

2.1. Measurement Model

It is assumed that the signals of interest are bandlimited to a fre-
quency band of an octave, i.e., f = ω/(2π) ∈ [fℓ, 2fℓ]Hz where fℓ
is the lowest frequency component of interest. For good operation of
the modal preprocessing step, the receiving sensor array consists of
two concentric uniform circular arrays with radii respectively chosen
as [19]

R1 =
2c

3fℓ
and R2 = 0.5R1,

where c is the speed of signal propagation. It is required that the
concentric circular arrays have the same set of sensor angles φq for
q = 1, ..., Q, where Q is the number of sensors in each circular ar-
ray. The received signal at each sensor contains the signal emitted
from the target of interest, S(ω) and it is corrupted by an additive
noise that is assumed to be spatially and temporally white and inde-
pendent of the signal of interest.
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Let X1(ω) and X2(ω) be the received signals at the first and
second uniform circular array respectively. A modal preprocessing
step is carried out on the sum of the received signals at the two arrays
by evaluating

Z(ω) = J#(ω) [X1(ω) +X2(ω)] , (1)

where J(ω) is a matrix of size Q × (2N + 1) (N is the number of
modes in the received signal1) written as

J(ω) = K [LR1(ω) +LR2(ω)] ,

where

K =


e−jN(φ1+π/2) · · · ejN(φ1+π/2)

...
...

e−jN(φQ+π/2) · · · ejN(φQ+π/2)

 ,

LRi(ω) for i = 1, 2 is a diagonal matrix containing the Bessel func-
tions of different orders with arguments proportional to the radius
Ri of the circular array, written as

LRi(ω) =

 J−N

(
ω
c
Ri

)
0

. . .
0 JN

(
ω
c
Ri

)
 , i = 1, 2

and Jn(·) are the Bessel functions of the first kind.
As it is assumed that there could be at most one target in the

region of interest at any time instance, the received signal vector of
size (2N + 1) × 1 after the modal preprocessing step (1) can be
rewritten as

Z(ω) = a(ϕT)γS(ω) + N̆(ω), (2)
where γ is the gain of the signal S(ω) emitted from the target lo-
cated at direction ϕT from the sensor array, a(ϕT) is the frequency-
independent steering vector of the target written as

a(ϕT) =

 ejNϕT

...
e−jNϕT

 ,

and N̆(ω) is the noise at the different modes.
Let Z(ωb) for b = 1, ..., B denote the signals at the different

modes available after the modal preprocessing step (2) at the bth fre-
quency subband where B is the total number of frequency subbands
of interest. A beamforming method, minimum variance distortion-
less response (MVDR) is carried out on Z(ωb) for b = 1, ..., B,
and the power spectrum of the bth frequency subband over a range of
DOA values ϕ ∈ (−π, π] is obtained as

P b(ϕ) =
1

aH(ϕ)
(
Rb

zz

)−1
a(ϕ)

,

where Rb
zz = E

{
Z(ωb)Z

H(ωb)
}

. As the steering matrix is
frequency-invariant, the MVDR spectrum over different frequency
subbands can be averaged, i.e., obtaining

P (ϕ) =
1

B

B∑
b=1

P b(ϕ). (3)

The power spectrum P (ϕ) in (3) is then used to obtain the likeli-
hood of the samples in the proposed particle-filter-based algorithm
according to the DOA value of the samples.

1The frequency band over an octave is separated into a number of five fre-
quency subbands, where each subband has a different number of modes [19]

2.2. Target Model

Let xt
k = [xt

k y
t
k ẋ

t
k ẏ

t
k]

T and xo
k = [xo

k y
o
k ẋ

o
k ẏ

o
k]

T denote the target
and observer states (2D positions and velocities) respectively in the
Cartesian coordinates at time k. We assume a nearly constant veloc-
ity motion dynamics for the target, i.e., the dynamics model can be
written as

xk = Fxk−1 + vk−1 −Uk−1,k, (4)

where xk , xt
k − xo

k = [xk yk ẋk ẏk]
T , is the relative state vector,

F is the state transition matrix given by

F =

 1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 ,

∆ is the sampling interval, vk−1 is a 4×1 i.i.d. zero mean Gaussian
process noise vector and

Uk−1,k =

 xo
k − xo

k−1 −∆ẋo
k−1

yo
k − yo

k−1 −∆ẏo
k−1

ẋo
k − ẋo

k−1

ẏo
k − ẏo

k−1


is a vector of deterministic inputs that accounts for the effects of
observer accelerations.

The DOA of the target at time k, referenced clockwise positive
to the y-axis, can be calculated as

ϕT,k = h(xk) = arctan

(
xk

yk

)
.

3. PROPOSED PARTICLE FILTER FOR SINGLE TARGET
TRACK-BEFORE-DETECT

The particle filter (PF) [14] uses a set of Np weighted samples
{xi

k, w
i
k}

Np
i=1 to approximate the posterior density of the target of

interest at each time step k given measurements up to that time step.
The target state is then estimated as the expected value of the sam-
ple set. The PF has also been designed for TBD applications, e.g.,
in [17] where a target existence parameter ξk is used to represent the
probability that a target exist at time instance k.

In this section, an algorithm based on the PF is proposed for si-
multaneously detecting and tracking a single target. Different from
existing algorithms such as [17, 21], prior knowledge of the target
existence probability is not required in the proposed algorithm and
the measurement data used is the complete DOA spectrum of the re-
ceived signals Pk(ϕ) at each time step k. The proposed algorithm
adaptively redistributes the particles at the end of each recursion so
that the particles are concentrated in the area where it is more likely
for the target to exist. Besides that, resampling and regularization
of the particles are carried out when required to improve the distri-
bution of the particles. The pseudo-code of the proposed method is
presented in Algorithm 1.

The proposed algorithm is initialized with random samples
xi

0, i = 1, ..., Np uniformly distributed over the region of interest
(e.g., a circular region with a minimum and maximum range of inter-
est, [rmin, rmax]) and the particles are given weights wi

0 based on their
DOA value, h(xi

0) proportional to the initial DOA spectrum P0(ϕ),
i.e., wi

0 ∝ P0(h(x
i
0)). The initial target existence parameter ξ0 is

set to 0. Over the observation period, from time step k = 1, ...,K,
the algorithm recursively checks for target existence and estimates
the target state if it is expected to exist.
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When a new DOA spectrum Pk(ϕ) is received at time step k,
the threshold level for determining target existence is obtained as

γk =
buk − blk

2π
, (5)

where buk and blk are the upper and lower borders of the half-power
beamwidth of the mainlobe of Pk(ϕ) respectively. The samples from
the previous time step are propagated one step forward using the
target dynamics model (4) as

xi
k ∼ p(xk|xi

k−1).

The likelihoods of the new samples are obtained using the new DOA
spectrum of the received signals Pk(ϕ) as lik = Pk(h(x

i
k)).

If the target was not detected during the previous time step, i.e.,
the target existence parameter ξk−1 ≯ γk−1, a set of Nb birth parti-
cles {xi

k, w
i
k}

Np+Nb
i=Np+1 are generated. The range and velocity of the

birth particles are uniformly generated while the DOA values of the
particles are drawn from the newly received DOA spectrum, Pk(ϕ).
The birth particles are combined with the original set of particles and
they are given weights proportional to their likelihoods based on the
DOA spectrum, i.e., wi

k ∝ lik = Pk(h(x
i
k)), for i = 1, ...Np +Nb.

On the other hand, if the target was already detected during the pre-
vious time step, the birth particles are not required and the particles
are given weights wi

k ∝ likw
i
k−1, for i = 1, ..., Np. The particle

weights are then normalized such that
∑Ns

i=1 w
i
k = 1, where Ns is

the total number of particles at this stage.
Let Ck ⊆ {1, ..., Ns} denote the collection of particle indices

whose particles lie within the mainlobe of the DOA spectrum Pk(ϕ),
i.e., the particles that have DOA values within the interval [buk , b

l
k]

and range values within the interval [rmin, rmax]. The sum of the
weights of the particles in the mainlobe of Pk(ϕ), written as w̃k =∑

i∈Ck
wi

k, is used as an indication of target existence, i.e., the tar-
get existence probability ξk = w̃k. If ξk > γk, where γk is the
threshold level for target existence obtained in (5), the target exists
and vice versa. When the target is expected to exist, its state is esti-
mated as

x̂k|k =
1

w̃k

∑
i∈Ck

wi
kx

i
k.

Before propagating the particles to the next time step, some fur-
ther processing is carried out to ensure good distribution of the par-
ticles. In all cases, the total number of particles to be propagated to
the next time step remains at Np.

• If no target has been detected, the samples are re-initialized
so that the set of Np samples are uniformly distributed over
the region of interest and they are given weights proportional
to Pk(ϕ).

• If a new target has been detected, the particles lying outside
the mainlobe of Pk(ϕ) are discarded and the remaining sam-
ples are resampled and regularized so that the total number of
samples is Np.

• For a target that continues to exist, the samples lying out-
side the mainlobe of Pk(ϕ) are redistributed according to the
mean and covariance of the particles inside the mainlobe. The
new set of particles x̆i

k are given new weights w̆i
k ∝ wi

k l̆
i
k

where l̆ik = P ′(h(x̆i
k)), i = 1, ..., Np is the likelihood of

the redistributed set of particles and P ′(ϕ) is the normalized
spectrum such that the mainlobe has values between 0 and 1.
The weights are normalized and if the effective sample size,
estimated as N̂eff = 1/

∑Np
i=1(w̆

i
k)

2, is less than a threshold
value Nth, the particles are resampled and regularized.

Algorithm 1 The Proposed Track-Before-Detect Algorithm

1: Initialization xi
0, w

i
0, i = 1, ..., Np; ξ0

2: for k = 1 to K do
3: Particle propagation xi

k ∼ p(xk|xi
k−1), i = 1, ..., Np

4: if ξk−1 ≯ γk−1 then
5: Draw random samples xi

k, i = Np + 1, ..., Np +Nb

6: Weight wi
k ∝ lik = Pk(h(x

i
k)), i = 1, ..., Np +Nb

7: else
8: Weight wi

k ∝ likw
i
k−1 = Pk(h(x

i
k))w

i
k−1

9: end if
10: Total number of particles Ns

11: Normalize weights such that
∑Ns

i=1 w
i
k = 1

12: Obtain borders buk , b
l
k of the mainlobe of Pk(ϕ)

13: Calculate target existence threshold
γk = (buk − blk)/(2π)

14: Find the set of indices of particles in the mainlobe Ck

15: Target existence probability ξk = w̃k =
∑

i∈Ck
wi

k

16: if ξk > γk then
17: Estimated state x̂k|k = 1/(w̃k)

∑
i∈Ck

wi
kx

i
k

18: if ξk−1 ≯ γk−1 then
19: Discard particles i ̸∈ Ck

20: Resample and regularize the particles
21: else
22: Redistribute the particles
23: if N̂eff < Nth then
24: Resample and regularize the particles
25: end if
26: end if
27: else
28: Re-initialize the particles
29: end if
30: end for

4. SIMULATIONS

The performance of the proposed algorithm in simultaneously de-
tecting and tracking a single target was tested using a number of
M = 500 Monte Carlo runs. The observer and target trajectories
used in the simulations are shown in Figure 1. The sampling interval
∆ = 1 minute and the observation period lasts for 30 minutes. Over
the observation period, the observer travels with a constant speed of
6 knots in a zigzag trajectory, alternating the direction of motion be-
tween 55◦ and 125◦ every 5 minutes, to improve the observability of
the target state. The target exists from the 6th to the 25th minute and
it moves with a constant velocity of 4 knots towards the direction
−140◦. The received signals at the observer has a very low SNR of
−30dB. The target range of interest is in the interval [0.1, 10] km
while the minimum and maximum relative speeds of interest are 0.1
knots and 10 knots respectively. The sensor array is composed of
two concentric uniform circular arrays, each with Q = 25 elements,
and their radii are 0.5m and 0.25m respectively.

The proposed algorithm uses a number of Np = 2000 particles
and when no target has been detected, a number of Nb = Np/5 birth
particles are generated. The particles are resampled and regularized
if the effective sample size N̂eff is below Nth = Np/3. The perfor-
mance metric used to test the accuracy of the algorithm is the root
mean square (RMS) position error which is defined as

RMSk =

√√√√ 1

M

M∑
i=1

[(x̂i
k − xi

k)
2 + (ŷi

k − yi
k)

2],
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Fig. 1. The scenario used for the simulations

where M is the total number of Monte Carlo runs, (x̂i
k, ŷ

i
k) is the

estimated target position while (xi
k, y

i
k) is the true target position at

time k of the ith Monte Carlo run.
Using the proposed algorithm, the RMS position errors of the

estimated target states, when it is expected to exist (from the 6th to
the 25th minute) is shown in Figure 2. It can be seen that during
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Fig. 2. The RMS position error of the proposed algorithm

the first few time steps of target detection (from the 6th to the 12th

minute), the errors are relatively high due to the limited observability
of the target range. As more measurements are obtained over the
observation period, the errors drop steadily to reasonably low values
(from the 12th to the 25th minute), showing good accuracy of the
proposed algorithm in tracking the target.

The number of Monte Carlo runs (out of the 500 runs in the sim-
ulations) for the different initial target detection time step are shown
in Table 1. It can be seen that in more than 97% of the runs, the tar-
get is detected within 3 time steps of existence. The disappearance
of the target is successfully detected at time step k = 26 in 85% of

Initial Detection Time Step Number of Runs
6 268
7 187
8 32
9 10
10 2
11 1

Table 1. The number of runs with different initial target detection
time step

the runs.
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Fig. 3. The average target existence parameter

The average target existence probability ξk over the 500 runs is
shown in Figure 3. It can be seen that the target existence probability
increases rapidly from the 6th minute to the 9th minute where it stays
most of the time at a value above 0.9 over the duration of target pres-
ence. The target existence probability drops sharply back to about
0.1 at the 26th minute when the target stops to exist.

5. CONCLUSION

We have proposed an algorithm for jointly detecting and tracking
a single target of low SNR traveling with a nearly constant veloc-
ity. The proposed algorithm takes as measurement data the complete
DOA spectrum of the received wideband signals emitted from the
target. It could reliably detect the appearance and disappearance of
the target without any prior information on the target existence prob-
ability and it demonstrates good accuracy in tracking the target when
it exists. Future work will include the investigation of a target with
non-constant velocity and also extending the algorithm for simulta-
neously detecting and tracking multiple targets.
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