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ABSTRACT

The reweighing process of particle filtering can result in very
large variance of particle weights; a problem known as degener-
acy. The usual solution to this is an intermediary resampling step in
which particles with lower weights are replaced by copies of those
with large weights. This resampling inevitably results in loss of the
information contained in those particles of low weights. Most of
the existing stochastic and deterministic resampling schemes cause
further loss of information because all the resampled particles have
equal weights. These current techniques are what we would call,
“hard resamplers,” and they impede the accumulation of informa-
tion over many successive observations, which affects the detection
of very covert targets. This paper presents two variants of a soft
and deterministic resampling procedure that retains information con-
tained in the weights over multiple observations. We demonstrate
their effectiveness using a track-before-detect application.

Index Terms— Particle filter, soft resampling, track-before-
detect

1. INTRODUCTION

Many scientific problems require sequential estimation (or tracking)
of the state of a dynamic system (or target). The objective of the
estimator is to build a posterior probability density function (pdf)
of the state of the target using the noisy sensor data (observations).
Although many techniques have been developed over the years,
Bayesian estimation [1, 2] provides a rigorous platform to accom-
plish this. One prominent Bayesian tracking algorithm in extensive
use is the particle filter (PF) [3], which operates on the principle
of approximating the posterior state density by a set of weighted
samples, which in this context are known as particles [4].

Particle filtering [5] can be regarded as a technique that uses two
fundemental approaches in succession. The first, sequential impor-
tance sampling (SIS) specifies the process of drawing new particles
at each time step based on a state equation [5–7] and updating the
weights according to the likelihood of the state they represent. By
itself, SIS results in a large variance of the weights and this ineffi-
ciency is known as degeneracy. This is overcome using a second
stage, resampling, that represents the posterior by a new set of par-
ticles [8, 9]. Consequently, the PF can be termed the sequential
importance resampling (SIR) filter. The interest of this paper is in
resampling, the objective of which is to replicate the particles with
higher weights. The particles with lower weights are replaced by
those with higher weights so that the final particle cloud represents
the posterior more accurately. This replacement would reweight the
replaced particles so that the variance among the weights is reduced

[8, 10].

Among the stochastic resamplers, multinomial [3] and residual
[11] resampling were the first to be developed. Apart from being
computationally expensive, these are based on duplicating a parti-
cle after comparing the cumulative weight with a random number
U(0, 1] (i.e, uniformly distributed between the maximum and min-
imum values that the cumulative normalized weights can take). If
the random number is larger than the weight of a potential particle,
even a particle with large weight could be discarded. A particle
can be considered to be potential when it is starting to gain weight
either because the target is making a turn towards it or it is in the
process of declaring a covert target. Stratified [12] and systematic
[5] resampling overcome this problem by pre-partitioning the space
(0, 1] into I disjoint sets whose values increase linearly (I is the
total number of particles). If the ith particle has a weight lower than
the ith random number, it would be discarded. Hence these methods
suffer from information loss due to random number comparison.
All the above techniques reset all the weights equally. This could
be interpreted to mean that each resampled particle is equally valid
in representing the posterior density associated with the state of the
target, which in practice is rarely true and unwanted in scenarios
where a target makes a sharp maneuver or suddenly becomes covert.

This problem is overcome using deterministic resampling
schemes which are threshold-based. One of its variants is optimal
resampling [13] that proposes to keep the weights of the dominant
(large weight) particles unchanged, while the others are resam-
pled and reweighted using the stratified distribution. However, this
technique does not reduce the variance among the weights. Partial
resampling [9] proposes to keep the set of moderately weighted
particles unchanged and resample the set of dominant and negligible
particles. However, the reweighting is now based on the size of the
sets but not on the individual weights. This causes loss of potential
information contained in the negligible particles.

When I is large, the posterior density represented by all these
techniques is an accurate representation of the true density. However
it is usually the case that I is limited. Our proposed soft resampling
procedures provide a method for enhancing the posterior represen-
tation with fewer particles.

The detection of very covert targets using a Bayes filter [14]
relies on the accumulation of information over many consecutive
observations. Most resampling procedures impede this accumu-
lation. Hence the motive behind the current work is to devise a
resampling scheme which retains this information. In scenarios
where particles are searching for new (very covert) targets, the
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current resamplers create fairly tight clusters so that there are not
enough particles to span the entire observation space by the time a
target appears. Hence the conventional track-before-detect (TBD)
PF [4, 15] proposes to model the birth and death of particles so
that when the target is absent, most particles are dead and take a
maximum weight of 1. Hence the resampler does not produce many
replacements and results in a loose cloud. The TBD PF efficiency
therefore depends on the total number of particles. The greator the
number of particles, the looser is the particle cloud and the faster
the target lock, but also the higher is the computation. This paper
proposes two variants of a novel soft resampling technique that is
deterministic, reweights the particles based on their actual weights
and the weights of the retained particles.

The rest of the paper is organized as follows. Section 2 sets the
notation and gives a brief overview of the PF. We describe the two
variants of the proposed soft resampling technique in section 3, give
the evaluation details in section 4, relate to prior work in section 5
and conclude in section 6.

2. PARTICLE FILTERING

In this section, we fix the notation and mathematically describe how
the particles are drawn by importance sampling and are sequentially
updated for the next time step after resampling.

The posterior pdf of the state of the target xk at time k can be
given by p(xk|z1:k), where z1:k denote the noisy sensor data up
to time step k. This posterior is represented by a set of particles
{xik}Ii=1 and their corresponding weights {wi

k}Ii=1. i is the parti-
cle index and I is the total number of particles. At time k = 0 the
particles are drawn from a suitable distribution, for example a uni-
form or a Gaussian distribution. Their weights are also initialized.
In the succeeding time steps k ≥ 1, the new set of particles should
be ideally drawn from the actual posterior p(xk|z1:k). Since this
is difficult, particles are drawn from a convenient importance distri-
bution q(xk|z1:k), which is generally the Markov transition density
p(xk|xk−1). This can be represented as

xik ∼ q(xik|z1:k) ∼ p(xik|xik−1) (1)

The weights of the particles are updated as

wi
k =

p(xk|z1:k)

q(xk|z1:k)
= wi

k−1

p(zk|xik) p(xik|xik−1)

q(xik|z1:k)
(2)

where p(zk|xk) is the likelihood. Then the weights are normalized
and the posterior can be approximated as

p(xk|z1:k) ≈
I∑

i=1

wi
kδ(xk − xik) (3)

As the algorithm progresses, the discrepancy between the weights
increases. This problem is called degeneracy [5]. One measure of
the effciency in this context is the effective sample size [9], defined
as

Ieff =
1∑I

i=1(wi
k)2

(4)

such that Ieff � I , and low Ieff exhibits high degeneracy. The so-
lution to degeneracy is to resample the particles with replacement.
Whenever Ieff falls below a certain threshold [8], the particles with
negligible weights should be replaced by those with higher weights.
The idea is to eliminate particles that have small weights and replace
them at the locations described by those that have larger weights
[9, 12].

3. SOFT RESAMPLING

In this section, we present our technique of soft resampling. The set
of weights {wi

k}Ii=1 at time k are obtained after importance sam-
pling. These weights are first normalized as

wi
k =

wi
k∑I

i=1 w
i
k

(5)

so that they sum to 1, and then sorted in descending order. Each
particle xik is replicated if its weight is larger than 2

I
, with the number

of replications given by

Cxi
k

= max{1, bI.wi
kc} (6)

Each xik that is now available Cxi
k

times will be reweighted as

aik =
wi

k

Cxi
k

(7)

It is now evident that, every particle whose weight is less than 2
I

will appear only once with its weight unchanged, while every par-
ticle whose weight is greator than 2

I
will appear as many times as

the integer part in the numerator of its weight with its weight equally
divided amongst them. This procedure can be visualized in Fig. 1
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Fig. 1: Among the 8 particles, the first particle has a weight of 3.3
I

and hence gets 3 copies each weighted at w1
3

= 1.1
I

. The second
particle has a weight of 2.8

I
and hence gets 2 copies each weighted at

w2
2

= 1.4
I

. The other particles’ weight is left unchanged since they
are all less than 2

I
. The last 3 particles are discarded since we need

only 8 particles

Since only I reweighted particles are enough, the algorithm is ter-
minated once I particles are created, and the others are discarded.
This implies that we have deterministically replicated the particles
and reweighted them based on ther individual weights. The weight
of the discarded particles can be reallocated in one of the two fol-
lowing ways.

Soft resampling - normalization: The weights can then be nor-
malized as

bik =
aik∑I
i=1 a

i
k

(8)
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Normalizing would adjust the weights so that they sum to 1. When
these weights are reused in the subsequent time step, they accurately
describe the previous particles’ influence on the new particle set.

Soft resampling - redistributing the discarded weights: The
weights of the discarded particles can be assigned to the retained
particles in the following procedure. We first evaluate the total dis-
carded weight as

aspare = 1−
I∑

i=1

aik (9)

This weight is shared among the lower weight particles. To do this,
we find the particle index p such that

aspare + aIk + aI−1
k + ...+ aI−p

k ≤ aI−p−1
k (10)

and each of the I − p particles starting from the Ith particle are
reweighted as

{bik}Ii=I−p =
aspare +

∑I
i=I−p a

i
k

p
(11)

4. EVALUATION

To demonstrate the validity of our techniques, we first test the soft-
ness of our methods. For this we used the PF based TBD numerical
example described in chapter 11 of [4], which is also found in [14].
The observations now are 10×10 frames which are 2-D snapshots
from a staring camera and all the results are averaged over 50 itera-
tions. Fig. 2 shows the looseness of 1000 particles measured accord-

ing to Ctight =
∑
||xi

k−
∑I

i=1

xi
k
I
||2

I
versus the noise variance at the

camera with no target appearing for 30 frames. It can be observed
that our techniques leave a looser cluster by the 30th frame.
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Fig. 2: Tightness of 1000 particles versus noise variance. Particles
keep searching for 30 frames with no target. The implementations
are the PF with multinomial [3], residual [11], stratified [12], sys-
tematic [5] (implemented from [8]), deterministic (with the thresh-
old chosen as 1

I
) [13] and partial [9] (with the thresholds chosen as 2

I

and .9
I

) resampling, auxiliary PF [6] with systematic resampling and
our proposed techniques on the PF and the auxiliary PF. The legend
of this figure applies to Fig. 3, Fig. 4, Fig. 5 and Fig. 7 also.

Since there is a loose cluster of particles to span the entire observa-
tion space, our techniques lock onto a new target much faster. To

demonstrate this, we use the same example, now with a noise stan-
dard deviation of Σ = 2. The target appears in the 8th frame and
maneuvers itself for 20 frames. Fig. 3 shows the number of frames
taken to lock onto the target versus the number of particles, and it
can be observed that our techniques lock faster with fewer particles.
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Fig. 3: No, of frames taken from the appearance of a target to lock
onto a target (i.e for the rms error to decrease to below 0.1) versus
no. of particles. The target appears in the 8th frame and maneuvers
for 20 frames.

We now show that redistributing the weight of the discarded parti-
cles improves the accuracy of the scheme. Considering the same
scheme where the target appears in the 8th frame and maneuvers for
20 frames, Fig. 4 shows the rms error versus the number of particles.
It can be observed that the error is lower for the proposed methods.
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Fig. 4: rms error versus number of particles. Noise variance at the
camera is 4. The target appears in the 8th frame and maneuvers for
20 frames.

It is a common practice to resample when the effective sample size
Ieff drops below a threshold rather than at every time step [3, 5].
Fig. 5 shows rms error versus the Ieff threshold and it can be ob-
served that our techniques perform accurately with a lower thresh-
old, thereby allowing resampling less frequently, which in turn re-
duces the computational load.
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Fig. 5: rms error vs Ieff threshold for 1000 particles. Noise variance
at the camera is 4. Target appears in the 8th frame and maneuvers
for 20 frames.

We now demonstrate the complete TBD procedure and show that our
resampler can be used directly in a classical PF, bypassing the need
to model the birth and death of the targets. All the particles are alive
all the time and tracks are initiated and terminated by observing the
cluster looseness chosen to be 0.4. Fig. 6 shows the evolution of
5000 particles and the filter output. Our filter takes a little longer
than the conventional TBD PF to declare absence of the target after
the target has disappeared.
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(a) 5th frame.
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(b) 8th frame.

0 2 4 6 8 10
0

2

4

6

8

10

x−position[m]

y−
p
o
si

tio
n
[m

]

(c) 13th frame.
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(d) 24th frame.
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(f) Actual vs estimate plot.

Fig. 6: Particle evolution of the PF using soft resampling. A target
appears in the 8th frame and persists until the 24th frame. Noise
variance at the camera 16. The blue line is the ground truth, magenta
dots are the particles and the solid red line is the filter estimate.

We finally test the simplicity of our approaches. Fig. 7 gives
the computational time to complete the above simulation versus the
number of particles. Our techniques are more simple since we do
not need to model the birth and death of the particles.
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Fig. 7: Computational time vs number of particles plot. Observa-
tions are 2-D snapshots from a 10×10 frame with a noise variance
of 9. Results are averaged over 50 iterations of 30 frames each.

5. RELATION TO PRIOR WORK

Stochastic resampling techniques [3, 5, 11, 12] are extensively used
in PFs to reduce particle degeneracy. However, they discard parti-
cles that may be gradually accumulating weight causing loss of po-
tential information. These techniques also reset the weights equally
[8, 16], with consequent loss of some of the information that could
have been propagated to the next time step. Although deterministic
resampling schemes overcome these limitations by allowing the in-
formation regarding the weights to survive the resampling process,
the optimal resampling scheme of [13] does not reduce the variance
among the weights and partial resampling [9] reweights the particles
based on the number of dominant and negligible particles rather than
on their individual weights. All these techniques are hard resamplers
that are not feasible for direct use in TBD scenarios and necessitate
modelling of the birth and death of particles [4, 14]. In this paper,
we proposed two variants of a novel soft resampling method that
achieves the simultaneous goals of maximising the retention of in-
formation over successive time steps, while minimizing the variance
of the particle weights. The techniques can be used in a classical PF
as a TBD PF making the process much simpler.

6. CONCLUSION

In this paper, we proposed two approaches for soft resampling that
can be used in a PF. Through simulations, we first demonstrated that
our algorithms retain a looser cluster, which then aids in a faster lock
when a target appears. We also demonstrated that our techniques ex-
hibit higher tracking efficiency because of redistributing the weights
of the discarded particles. We then demonstrated that our technique
can be used in a classical PF for TBD applications and established
that the computational load is reduced since we do not explicitly
model particle birth and death.
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