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ABSTRACT

In this paper, a new Cramér-Rao lower bound (CRLB) is
derived for passive source localization based on angles-of-
arrival (AOAs), gain ratios of arrival (GROAs) and time
differences of arrival (TDOAs) in a wireless sensor array net-
work. The derived CRLB using AOA-GROA-TDOA (AGT)
is reduced to the one using AOA-GROA if no coherence exists
across the arrays and lower than the CRLB using AOA-only.
When the coherence is considered, the CRLB using AGT
measurements is consistently lower than the other known
bounds using AOA-only, TDOA-only and AOA-TDOA.

Index Terms— Passive source localization, Cramér-Rao
lower bound (CRLB), angles-of-arrival (AOAs), gain ratios of
arrival (GROAs), time differences of arrival (TDOAs).

1. INTRODUCTION

Passive source localization is one of significant applications in
sensor networks that has been a research of focus for the past
over ten years [1, 2, 3, 4]. When a large number of sensors
are deployed in a field, two common techniques for passive
source localization is to measure the time difference of arrival
(TDOA) [5, 6] and the source signal energy [7].

As the arrays are regarded as a whole sensor node in the
sensor networks, the additional angle of arrival (AOA) mea-
surements derived by array processing techniques can be used
in the localization tasks. Basically, the AOA-based localiza-
tion methods consist of two steps [8, 9]: 1) the bearing of
the source signal is estimated in each array and then transmit-
ted to the fusion center [10, 11]; 2) those bearings are inter-
sected to localize the target [12, 13]. Such scheme is simple to
implement, has minimum communication load and requires
coarse synchronization across the network [14]. However, it
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is suboptimal because it totally ignores the wavefront coher-
ence between the spatial separated arrays [15]. With regard
to localization accuracy, the optimal solution is joint process-
ing all raw data sent by the sensors in the fusion center. This
method has maximum communication load and requires ac-
curate time synchronization. A compromising scheme that
combines AOA and time delay estimation (TDE) is proposed
in [2]. Each array transmits the bearing estimate to the fusion
center. Besides, the raw data from one senor in each array is
also transmitted. Thus, the coherence across the arrays is also
investigated.

When the passive source signal is received by the sensors,
both time delay and signal strength information can be ob-
tained. Ho et al. [4] presents a hybrid source localization
method that combines the gain ratios of arrival (GROAs) and
TDOAs together. The energy measurements add new infor-
mation to the TDOA-only source localization approaches and
therefore the Cramér-Rao lower bound (CRLB) of the hybrid
localization method is improved compared with that of the
TDOA-only method. Recently, Gu [16] proposes a power-
bearing (PB) method for target motion analysis (TMA) and
shows that the CRLB of PB-TMA is lower than that of the
bearing-only TMA.

In this paper, we consider the passive source localization
problem using AOA-GROA-TDOA (AGT) measurements
in a wireless sensor array network. We first present a joint
AGT statistical signal model. Then the CRLB of a stationary
source location estimate is developed using AOAs, GROAs
and TDOAs. Without the coherence across the arrays, the
derived CRLB using AGT is reduced to the one using AOA-
GROA measurements and it is lower than the one using
AOAs only. When the coherence is considered, the CRLB
using AGT is consistently lower than other bounds using
AOA-only, TDOA-only and AOA-TODA.

2. STATISTICAL MODEL

The problem of passive source localization begins with a
model for a single stationary narrowband source radiating
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Fig. 1. A circular array consists of eight sensors on the edge
and a reference sensor in the center.

source signals that is measured by a network of H arrays,
each with Nh omni-directional sensors, h = 1, . . . ,H
and a reference sensor denoted as Rh, see Fig. 1. As-
sume that the Nh sensors are collaborated to estimate the
source bearing and transmits the bearing estimate to the
fusion center. Besides, the reference sensor in each array
transmits the raw samples to the fusion center. All targets
and arrays are assumed to be located in the xy-plane. Let
us assume Rh is located at (rh1, rh2), and the location of
sensor n ∈ {1, . . . , Nh} on the hth array is at coordinate
(rh1 + uhn1, rh2 + uhn2). The sources are supposed to
be located in the far field with respect to each array. We
denote p = [p1, p2]T as the location of the source, and
rh = [rh1, rh2]T is the position of Rh at the hth array. The
measurement of the nth sensor on array h at time t is modeled
as

xhn(t) = sh(t− τhn) + whn(t), (1)

where xhn(t) denotes the sensor output data, sh is the source
signal impinging on array h,

τhn = −1

c
(cos θh∆xhn + sin θh∆yhn) (2)

∆xhn = uhn1 − uh11, ∆yhn = uhn2 − uh12

is the propagation time from the first sensor to sensor n on
array h, c is the signal propagation speed, θh is the AOA with
respect to array h andwhn(t) represents the spatially and tem-
porally white Gaussian noise.

The measurement data sampled at the reference sensors
are represented as

x̄1(t) = s1(t) + w̄1(t)

x̄h(t) =
1

γh1
s1(t− βh1) + w̄h(t) (3)

where s1(t) represents source signal observed at reference
sensor 1 and βh1 and γh1 are the time delays and attenuations
of the signal received at Rh with respect to R1.

The sensor observation data (1) contain the source loca-
tion information through bearing [2] and the bearing could be
estimated in each array locally. The reference sensor mea-
surements implicate the source position by the GROA and
TDOA [2, 4]. After the raw data in references sensors is trans-
mitted, the GROA and TDOA can be estimated in the fusion

center. Thus, the location of the source can be determined
jointly from bearing, GROA and TDOA. In fact, the relation
between source location and bearing, GROA and TDOA is
given by

cos(θh) =
p1 − rh1
dh

, sin(θh) =
p2 − rh2
dh

(4)

βh1 =
dh − d1

c
, γh1 =

dh
d1

(5)

where dh = ‖p − rh‖. For convenience, we denote θ =
[θ1, . . . , θH ]T for AOA vector, γ = [γ21, . . . , γH1]T for
GROA vector and β = [β21, . . . , βH1]T for TDOA vector.

With regard to time delay, it is more convenient to convert
the time domain measurements to the frequency domain. Let
Xhn(ω) and X̄n(ω) be the Fourier transform of xhn(t) and
x̄h(t) respectively

Xhn(ω) = e−jωτhnSh(ω) +Whn(ω) (6)

X̄h(ω) =
1

γh1
e−jωβh1S(ω) + W̄h(ω), (7)

where Sh(ω), S(ω), Whn(ω) and W̄h(ω) are the Fourier
transforms of sh(t), s(t), whn(t) and w̄h(t). We collect the
measurements for bearing estimation at each array h into
Nn × 1 vectors

Xh(ω) = [Xh1(ω), . . . , Xh,Nh
(ω)]

T
. (8)

We then further collect all the observations from the H arrays
into a vector

X(ω) =
[
XT1 (ω), . . . ,XTH(ω), X̄1(ω), . . . , X̄H(ω)

]T
. (9)

Assume that X(ω) is a zero mean complex Gaussian ran-
dom vector. The measurement noise Whn(ω) and W̄h(ω),
n = 1, . . . , Nh, h = 1, . . . ,H are modeled as zero mean
complex Gaussian random variable. The source signal and
measurement noise in (6) and (7) are uncorrelated with each
other. Then, the covariance matrix is given by

R(ω) = E[X(ω)XH(ω)]

=

[
RA(ω) 0

0 RGT (ω)

]
, (10)

where RA(ω) is the covariance matrix for bearing estima-
tion, RGT is correlation matrix for the reference sensor mea-
surements. Assume that the signals are spatially incoherent
among arrays for AOA estimation. Then

RA(ω)

=

 P1(ω)a1(ω)aH1 (ω) · · · 0
...

. . .
...

0 · · · PH(ω)aH(ω)aHH(ω)


+ ΣA(ω) (11)
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where

ah(ω) = [e−jωτh1 , . . . , e−jωτh,Nh ]T (12)
ΣA(ω) = blkdiag[σ1(ω)IN1 , . . . , σH(ω)INH

] (13)

σh(ω) is the variance of the noise spectrum in the hth array,
INh

denotes theNh×Nh identity matrix and blkdiag denotes
block diagonal operator. RGT (ω) utilizes the spatial signal
coherence to allow GTOA and TDOA estimates,

RGT (ω) = P1(ω)α(ω)αH(ω)�Υ(ω) + ΣGT (ω) (14)

where Υ(ω) is the correlation coefficient matrix for the
source signals among the arrays

Υ(ω) =


1 υ21(ω) · · · υH1(ω)

υ21(ω) 1 · · · υH−1,1(ω)
...

...
. . .

...
υH1(ω) υH−1,1(ω) · · · 1


(15)

α(ω) =

[
1,

1

γ21
e−jωβ21 , . . . ,

1

γH1
e−jωβH1

]T
(16)

ΣGT (ω) = diag[σ1(ω), . . . , σH(ω)] (17)

� denotes the Hadamard product and diag denotes diagonal
operator.

3. THE CRAMER-RAO LOWER BOUND ANALYSIS

In this section, we derive the CRLB for the source localization
problem based on AOA, GROA and TDOA measurements.
The parameter of interest is the source position p. To develop
the CRLB, we start with the probability density function (pdf)
of each measurement. The log of the probability density func-
tion of X(ω) is

ln p(X(ω)) = C−ln det(R(ω))−XH(ω)R−1(ω)X(ω) (18)

whereC represents the constant term. The Fisher information
matrix (FIM) is defined as

J = −E
[
∂2 ln p(X(ω))

∂p∂pT

]
. (19)

Let us consider the narrowband source signal, where the band
of frequencies ranges ω0 − (∆ω/2) ≤ ω ≤ ω0 + (∆ω/2). If
∆ω is small enough, then the ω dependent terms in (19) can
be approximated by their values at ω0. For large observation
period T , the FIM is approximated by

J ≈ −T ∆ω

2π
E
[
∂2 ln p(X(ω0))

∂p∂pT

]
. (20)

For notation simplicity, we will drop the ω0 index in
the symbols in the following. Since we assume the complex

Gaussian random vector X(ω) is zero mean, the i, jth element
of J can be written by

Ji,j =
T ∆ω

2π
tr
[
∂R
∂pi

R−1 ∂R
∂pj

R−1

]
. (21)

After all the elements of J are calculated, the CRLB is the
inverse of the FIM

CRLB(p)θ,β,γ = J−1 (22)

It can be observed from (10) and (21) that the dependency
of the CRLB on θ, β and γ, and hence p, is through the cor-
relation matrix R. For RA, it does not consider any coherence
information among the arrays. Yet RGT explores the coher-
ence information among the arrays. If υ21 = · · · = υH1 = 0,
RGT becomes

RGT = diag
[
P1 + σ1

P1

γ2
21

+ σ2 · · · P1

γ2
H1

+ σH
]
.

(23)
We say that the CRLB using AGT is reduced to the CRLB
using AOA-GROA.

4. SIMULATION RESULTS

In this section, numerical examples are presented to evaluate
the CRLB on the localization accuracy using AOA, GROA
and TDOA in a wireless sensor array network. In the fol-
lowing simulations, we consider the same array network ge-
ometry as the examples given in [2, 17]. There are H = 3
identical arrays are located at coordinates (x1, y1) = (0, 0),
(x2, y2) = (400, 400), and (x3, y3) = (100, 0). The arrays
are circular with a 4-ft radius and each array contains eight
omni-directional sensors, i.e., N1 = · · · = NH = 8 and a
reference sensor. Eight sensors are equally spaced around the
perimeter of the array and the reference sensor is located at
the center of the circle, see Fig. 1. Let the source locate at
(200, 300). The source is narrowband with a bandwidth of 1
Hz centered at 50 Hz. For each example, T = 4000 samples
are measured with sampling rate fs = 2000 samples per sec-
ond. The observation time is T = T/fs = 2 second. The
CRLB is calculated using the FIM [2]

CRLB(p) =

√
J−1
11 + J−1

22 (24)

We first consider zero coherence case. Fig. 2 plots the
CRLB ellipses using AOA-TDOA and AGT. We observe that
the CRLB using AGT is lower than the CRLB using AOA-
TDOA. Fig. 3 plots the CRLB of the source localization using
AOA-only, TDOA-only, AOA-TDOA and AGT with respect
to various values of coherence υ21 and υ31, where υ21 = υ31.
From Fig. 3, we observe that the CRLB using AGT is con-
sistent lower than the other bounds using AOA-only, TDOA-
only and AOA-TDOA. The CRLB using TDOA-only is lower
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Fig. 2. The CRLB ellipses derived using AOA-TDOA and
AOA-GROA-TDOA with zero coherence across the arrays.
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Fig. 3. The CRLBs using AOA-only, TDOA-only, AOA-
TDOA and AOA-GROA-TDOA with respect to various co-
herence, SNR = 20 dB.
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Fig. 4. The CRLBs using AOA-TDOA and AOA-GROA-
TDOA with respect to different SNR, zero coherence case.
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Fig. 5. The CRLBs using AOA-TDOA and AOA-GROA-
TDOA with respect to different SNR, perfect coherence case.

than the one using AOA-only except when the coherence is
small.

We then investigate the CRLB with respect to various
signal-to-noise ratios (SNR). The SNR is controlled by vary-
ing the observation noise variance in each array:

SNRh = 10 log10(Ph/σh). (25)

The comparisons between the two CRLBs using AOA-TDOA
and AGT with respect to various SNR are given in Fig. 4 and
Fig. 5. Fig. 4 shows the CRLBs using AOA-TDOA and AGT
when the coherence is zero and Fig. 4 plots the two CRLBs
for perfect coherence. Both Fig. 4 and Fig. 5 show that the
GROA adds new information for source location estimate and
therefore improves the CRLB greatly.

5. CONCLUSION

In this paper, we present a new passive source localization
method using the AOAs, GROAs and TDOAs measurements
jointly in an energy-constrained wireless sensor array net-
work. We develop its Cramér-Rao lower bound (CRLB) of
source localization estimate. To develop the CRLB, we use
the scheme which transmits the bearing estimate in each ar-
ray to the fusion center and communicates the raw data in the
reference sensor at the same time. The raw data can be used
to estimate the TDOAs and GROAs.

If there is no coherence across the arrays, only GROAs
can be estimated from the raw data in fusion center. The
CRLB using AOA-GROA-TDOA (AGT) is reduced to the
one using AOA-GROA. The GROA measurements explicitly
improve the performance of localization and the CRLB using
AOA-GROA is lower than the CRLB using AOA-only. When
the coherence is explored, the TDOA can be estimated and the
CRLB using AGT is consistently lower than the other bounds
using AOA-only, TDOA-only and AOA-TDOA.
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