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ABSTRACT

Modern localization systems/platforms such as sensor networks of-
ten experience uncertainty in the sensor positions. Improving the
sensor positions is necessary in order to achieve better localization
performance. This paper proposes a joint estimator for locating mul-
tiple unknown sources and refining the sensor positions using TOA
measurements. Rather than resorting to the traditional iterative non-
linear least-squares approach that requires careful initializations, the
proposed estimator is algebraic and computationally attractive. The
small noise analysis shows that the proposed estimator is able to at-
tain the CRLB performance for both the unknown sources and the
sensor positions. Simulations support the efficiency of the proposed
estimator.

Index Terms— Sensor network, sensor position refinement,
source localization, time of arrival

1. INTRODUCTION

Locating one or multiple sources via measurements from a network
of sensors has been an active research for the past few years. It
has wide varieties of applications in radar/sonar [1], wireless sensor
networks (WSN) [2] and cellular communications [3].

Localization uses a number of spatially separated sensors at
known positions to determine the location of an emitting source
through measurements in the form of Time Difference of Arrival
(TDOA) [4], Time of Arrival (TOA) [5], etc. Different from tradi-
tional applications such as in radar, modern localization platforms
including sensor networks do not have precise knowledge of the
sensor positions [6]. Accurate sensor positions are necessary for
event monitoring and geographic routing applications [7]. The sen-
sor position uncertainty could contribute to considerable amount of
degradation in localization accuracy [8].

We can improve the sensor positions by using one or multi-
ple sources, often called calibration sources or anchors, that are at
known locations. Deploying a calibration source could be costly. A
more practical approach is to refine the sensor positions upon the
localization of an unknown emitting source [9, 10]. Based on the
available, although inexact, sensor positions we can identify the lo-
cation of the unknown source. The estimated unknown source loca-
tion can be exploited to refine the inaccurate sensor positions. This is
the technique taken in [11] which has shown that such a refinement
scheme can achieve the CRLB accuracy for the sensor positions.

This paper takes a different approach than the previous estimation-
refinement scheme and performs joint estimation of the unknown
source locations and the inaccurate sensor positions together. The
joint estimation is expected to tolerate higher noise level before the
thresholding effect caused by non-linear estimation starts to occur.

Joint estimation of source and sensors for TDOA location has
been examined in [12]. The present work extends the method for
TOA location in sensor networks and compares the performance
with the sequential estimation-refinement approach. Rather than
resorting to the traditional Maximum Likelihood Estimator (MLE)
which requires good initialization and high complexity [9] or sub-
optimum estimator [10], we shall develop here a computationally
efficient algebraic solution. Also included in the paper is the per-
formance analysis of the proposed method in reaching the CRLB
performance for Gaussian noise over the small error region.

In the following, Section 2 states the localization scenario and
develops the proposed method. Section 3 analyzes the performance
of the proposed solution and shows that it is able to reach the CRLB
accuracy. Section 4 provides simulation results to support the theo-
retical developments and Section 5 concludes the paper.

2. PROBLEM FORMULATION AND PROPOSED
SOLUTION

Let us consider the localization scenario as shown in Fig. 1, which
consists ofM sensors to locateK independent sources. The sources
can be unknown emitters of interests or newly added sensor nodes.
The true locations of the unknown sources to be found are denoted
by N × 1 vectors uo

i , i = 1, 2, · · · ,K, of Cartesian coordinates,
where N = 2 for 2D localization or N = 3 for 3D localiza-
tion. The precise positions of the sensors soj , j = 1, 2, · · · ,M , are
not known and the available inaccurate sensor positions are sj =
soj + ∆sj , where ∆sj represents the position error of sensor j.
They are collected to form a NM × 1 sensor position vector s =
[sT1 , s

T
2 , · · · , sTM ]T = so + ∆s, where so is the true sensor posi-

tion vector and ∆s = [∆sT1 ,∆sT2 , · · · ,∆sTM ]T is the random error
vector. We shall model ∆s as a zero-mean Gaussian random vector
with covariance matrix Qs.

TOA measurements are commonly used in sensor networks.
Assuming each sensor can acquire the signal from each source,
we have, after multiplying with the signal propagation speed,
the MK × 1 measurement vector r = [rT1 , r

T
2 , · · · , rTK ]T =

ro + n, where ro is the true range vector and n is the noise vector.
ri = [r1,i, r2,i, · · · , rM,i]

T is the measurement vector from source
i and rj,i is the TOA measurement of source i to sensor j. n is
modeled as a zero-mean Gaussian random vector with covariance
matrix Qr . We shall assume ∆s and n are independent of each
other for ease of illustrations.

Our goal is to estimate the source locations and at the same
time improve the inaccurate sensor positions as good as possible
using the TOA measurements. The unknown parameter vector is
θ = [uoT

1 ,uoT
2 , · · · ,uoT

K , soT ]T .
The proposed method makes use of a hypothetical source loca-
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tions ũi = uo
i + ∆ũi, where ∆ũi is the difference between the

hypothetical and the actual source location. The hypothetical loca-
tions are easy to obtain, please refer to [8] for details.

We begin the algorithm development from the parametric form
of roj,i:

roj,i = ||uo
i − soj ||. (1)

Squaring both sides of (1), substituting roj,i = rj,i − nj,i, s
o
j =

sj −∆sj ,u
o
i = ũi −∆ũi and ignoring the second order terms of

nj,i,∆sj , and ∆ũi yield

rj,inj,i =
1

2

[
r2j,i − sTj (sj − 2ũi)

]
− sTj ∆ũi

− 1

2
uoT
i uo

i − (ũi − sj)
T ∆sj .

(2)

We shall consider uoT
i uo

i as a new independent unknown so that
(2) becomes as a pseudo linear equation.

Other than the TOA measurements, the statistical knowledge of
the sensor position errors ∆s can also be utilized in the estimation.
Following the technique from [13] and putting (2) together for j =
1, 2, · · · ,M and i = 1, 2, · · · ,K yield the matrix equation

ε1 = h1 −G1ϕ
o
1, (3)

where

ε1 =
[
(B1n)T ,−∆sT

]T
,

B1 = diag
{
B1,1,B1,2, · · · ,B1,K

}
,

B1,i = diag
{
r1,i, r2,i, · · · , rM,i

}
,

h1 =
[
ηT
1 ,η

T
2 , · · · ,η

T
K ,0

T
NM×1

]T
,

ηi=
1

2

[
r21,i − sT1 (s1 − 2ũi), · · · , r2M,i − sTM (sM − 2ũi)

]T
,

ϕo
1 =

[
∆ũT

1 ,u
oT
1 uo

1, · · · ,∆ũT
K ,u

oT
K uo

K ,∆sT
]T
,

G1=


G1,1 · · · OM×(N+1) D1

...
. . .

...
...

OM×(N+1) · · · G1,K DK

ONM×(N+1) · · · ONM×(N+1) INM×NM

 .

(4)

Di and G1,i in G1 each has M rows and their jth rows, j =
1, 2, · · · ,M , are equal to

[
0T
N(j−1)×1, (ũi − sj)

T ,0T
N(M−j)×1

]
and

[
sTj ,

1
2

]
.

The weighted least-squares (WLS) solution of ϕo
1 from the ma-

trix equation (3) is

ϕ1 =
(
GT

1 W1G1

)−1
GT

1 W1h1, (5)

where the weighting matrix W1 is chosen to minimize the parameter
estimation mean-square error:

W1 = diag
{
B1QrB1,Qs

}−1
. (6)

The estimation accuracy is characterized by the covariance of
ϕ1, which is equal to

cov(ϕ1) '
(
GT

1 W1G1

)−1 (7)

when the sensor position noise is relatively small and can be ne-
glected in G1.

After ϕ1 is obtained, the estimates of ∆ũi and ∆s can be rep-
resented as

ϕ1,i , ϕ1

(
(N + 1)(i− 1) + 1 : (N + 1)(i− 1) +N

)
= ∆ũi + δũi,

ϕ1,s , ϕ1

(
(N + 1)K + 1 : (N + 1)K +NM

)
= ∆s + δs,

(8)

where δũi and δs are the estimation errors of ∆ũi and ∆s. Subtract-
ing ϕ1,i and ϕ1,s from the hypothetical source location ũi and the
sensor position vector s will provide the source and sensor position
estimates. They are, however, not able to reach the CRLB accuracy.
This is because we have introduced K additional variables uoT

i uo
i ,

i = 1, 2, · · · ,K, in ϕ1. We next explore these K additional vari-
ables to improve the estimation accuracy.

Though uoT
i uo

i is not related to so, the estimation errors of ∆ũi

and ∆s in ϕ1 are correlated. As a result, when the accuracy of
source location estimates is improved through the additional vari-
ables, the sensor position estimates can also be enhanced. In our
stage-2 solution, we will estimate the error terms δũi and δs in (8)
in order to provide more accurate estimations of the source locations
and sensor positions.

The (N + 1)ith, i = 1, 2, · · · ,K, element of ϕ1 is the estimate
of uoT

i uo
i

ϕ1

[
(N + 1)i

]
= uoT

i uo
i + ∆ϕ1

[
(N + 1)i

]
. (9)

Putting uo
i = ũi −ϕ1,i + δũi into (9) gives

∆ϕ1

[
(N+1)i

]
= ϕ1

[
(N+1)i

]
− (ũi−ϕ1,i)

T (ũi−ϕ1,i)

− 2(ũi −ϕ1,i)
T δũi.

(10)

Since δũi = ∆ϕ1

[
(N + 1)(i− 1) + 1 : (N + 1)(i− 1) +N

]
and

δs = ∆ϕ1

[
(N + 1)K+ 1 : (N + 1)K+NM

]
, together with (10)

we have the linear matrix equation

ε2 = h2 −G2ϕ
o
2, (11)

where

ε2 = B2∆ϕ1,

B2 = diag
{
B2,1,B2,2, · · · ,B2,K ,−INM×NM

}
,

B2,i = I(N+1)×(N+1), h2 =
[
ξT1 , ξ

T
2 , · · · , ξ

T
K ,0

T
NM×1

]T
,

ξi =
[
0T
N×1,ϕ1

(
(N + 1)i

)
− (ũi −ϕ1,i)

T (ũi −ϕ1,i)
]T
,

G2 = diag
{
G2,1,G2,2, · · · ,G2,K , INM×NM

}
,

G2,i =
[
− IN×N , 2(ũi −ϕ1,i)

]T
,

ϕo
2 =

[
δũT

1 , δũ
T
2 , · · · , δũT

K , δs
T ]T .

(12)

The WLS solution of ϕo
2 is then

ϕ2 =
(
GT

2 W2G2

)−1
GT

2 W2h2, (13)

where the weighting matrix W2 is

W2 = B−1
2 cov(ϕ1)−1B−1

2 . (14)

Let ϕ2,i be ϕ2

[
N(i − 1) + 1 : Ni

]
and ϕ2,s be ϕ2

[
NK + 1 :

NK +NM
]
. According to (8) the final source and sensor position

estimates are

ûi = ũi −
(
ϕ1,i −ϕ2,i

)
, ŝ = s−

(
ϕ1,s −ϕ2,s

)
. (15)
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3. PERFORMANCE ANALYSIS

In this section we shall show analytically that the proposed solution
can reach the CRLB accuracy. By using ∆ũi = ũi − uo

i and the
definitions of ϕ1,i, ϕ1,s in (8), (15) can be expressed as

ûi = uo
i −

(
δũi −ϕ2,i

)
= uo

i + ∆ϕ2,i,

ŝ = so −
(
δs−ϕ2,s

)
= so + ∆ϕ2,s.

(16)

As a result, the covariance matrix of θ̂ =
[
ûT
1 , · · · , ûT

K , ŝ
T
]T is

the same as that of ϕ2. When the error component in G2 is small
enough to be neglected (ũi sufficiently accurate), based on the WLS
theory we have

cov(θ̂) ' (GT
2 W2G2)−1 =

[
X̃ Ỹ

ỸT Z̃

]−1

, (17)

where

X̃=GT
3 Q

−1
r G3, Ỹ=GT

3 Q
−1
r G4, Z̃=GT

4 Q
−1
r G4+Q−1

s ,

G3 = diag
{
G3,1,G3,2, · · · ,G3,K

}
,

G3,i = B−1
1,iG1,iB

−1
2,iG2,i,

G4 =
[
GT

4,1,G
T
4,2, · · · ,GT

4,K

]T
,G4,i = −B−1

1,iDi.

(18)

Following a procedure similar to that in Appendix V of [8], we
can prove that when the noise is small compared to target range,

||∆sj ||
roj,i

' 0,
|nj,i|
roj,i

' 0, i = 1, 2, · · · ,K, j = 1, 2, · · · ,M (19)

we have
G3 '

∂ro

∂uo
, G4 '

∂ro

∂so
. (20)

Putting (20) into (18) and comparing (17) with the CRLB given in
Appendix A of [11] yield

cov(θ̂) ' CRLB(θo). (21)

From the small noise analysis above, the proposed solution is
able to attain the CRLB accuracy for both the source location and
sensor position estimates.

4. SIMULATION

A total of 100 random localization geometries are used in the sim-
ulations. Each geometry has K = 2 sources and M = 5 sensors,
where the sources and sensors are placed randomly with uniform dis-
tribution over a square area of 100× 100 and 60× 60 respectively.
Fig. 2 shows the overlay of the 100 geometries.

The performance indices are the mean squared error (MSE) of
the estimates computed by mse(u) = 1

K

∑K
i=1

(∑L
l=1 ‖û

(l)
i −

uo‖2/L
)

and mse(s) =
∑L

l=1 ‖ŝ
(l) − so‖2/L, where L is the

number of ensemble runs, û(l)
i and ŝ(l) are the ith source location

estimate and the sensor position estimates at ensemble l. Besides the
proposed method, the sequential method [11] (estimation-refinement
scheme) and the iterative MLE [14] are implemented for compari-
son. The sensor position estimates from [8] are also included. The
approach in [8] is applied to obtain the hypothetical source locations
for the proposed estimator. The same hypothetical source locations
are used as the initial guesses for the MLE .

The covariance matrix of the TOA measurements (after multi-
plied with signal propagation speed square) is Qr = σ2

rI, where I is
an identity matrix of size MK, σ2

r is the noise power which is fixed

to 10−3 in the simulations. The covariance matrix of the sensor po-
sitions is Qs = σ2

sJ, where J is a NM × NM diagonal matrix
whose diagonal elements are uniformly distributed between 1 and
10. We generate a different J for each localization geometry. σ2

s is
a scaling proportion of the sensor position covariance matrix whose
value varies between 10−2.25 and 100.25. The number of ensemble
runs L is 1000 in each geometry and the results given are the average
over the 100 geometries.

Fig. 3 gives the performance for source and sensor position esti-
mates as the sensor position noise power increases. The sensor posi-
tion noise power (σ2

avg) in the x-axis is trace(Qs)/(NM) averaged
over the 100 geometries. From the source location estimate results
in Fig. 3(a), when σ2

avg is not larger than 10−0.25, the proposed
method, the sequential method and the MLE give similar results and
attain the CRLB accuracy. For the sensor estimates in Fig. 3(b), the
proposed method is always better than [8] by more than 1 dB when
σ2

avg is not larger than 1. When σ2
avg exceeds 100.5, the proposed

method is worse than [8] because of the joint estimation rather than
the sensor position estimation only as in [8]. The proposed method
also outperforms the sequential method when σ2

avg is larger than 0.1.
The MLE deviates from the CRLB slightly later than the proposed
method but it requires iterations and higher computational cost.

The improvement of computation speed of the proposed method
over the MLE (with an average of 3 iterations) is about a factor of
two, measured using computation time in matlab for the simulations
provided. The actual speed improvement could vary depending on
implementations.

One purpose of refining the sensor positions is for better locating
a newly appeared source. To demonstrate, we continue the simula-
tion study as follows: for each of the 100 random geometries of two
sources and five sensors, we add one new emitting source. After
the positions of the two sources and five sensors are estimated, the
refined sensor positions are used to locate the new source and the
results are shown in Fig. 4. We observe that the CRLB of the new
source location estimate is about 3 dB lower when using the refined
sensor positions. The proposed method performs better than the se-
quential method in estimating the new source position. Interestingly
enough, it yields comparable results with the MLE.

5. CONCLUSION

In this paper, we have developed an algebraic solution that jointly es-
timates the positions of multiple sources and sensors. The proposed
method is able to achieve the CRLB performance for both the source
and the sensor locations. The refined sensor positions can improve
the localization of newly appeared sources subsequently. The good
performance of the proposed estimator is shown analytically and
supported by simulations. Compared to the sequential estimation-
refinement technique, the proposed estimator provides better perfor-
mance in sensor position estimates at higher noise level.

The robustness of the proposed estimator under large or non-
Gaussian type errors are a subject for further investigation.
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