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ABSTRACT

We present a new subband information fusion (SIF) method
for wideband direction-of-arrival (DOA) estimation using sin-
gle sparse signal representation of multiple frequency-based
measurement vectors. The problem of wideband DOA esti-
mation using SIF method is to jointly utilize all the frequency
bin information to recover a single sparse indicative vector
(SIV). The SIF method belongs to the sparse signal represen-
tation domain and therefore it will suffer from two cases of
ambiguity: algebraic aliasing and spatial aliasing. We show
that these two categories of ambiguity can be reduced by com-
bining all the frequency components. The SIF algorithm is
then proposed and the SIV is recovered iteratively. The nu-
merical simulations are performed to illustrate that the SIF
method has superior performances.

Index Terms— Direction-of-arrival estimation, sparse
signal representation, subband information fusion, wideband
source, unconstrained optimization.

1. INTRODUCTION

Many wideband direction-of-arrival (DOA) estimation meth-
ods have been proposed over last three decades due to their
various applications in radar, sonar, wireless communication
and radio-astronomy etc. [1]. A classical wideband array
processing is to decompose the wideband signals into many
narrowband signals with a filter bank or the discrete Fourier
transform (DFT), and two categories, referred to as incoherent
signal subspace method (ISSM) [2] and coherent signal sub-
space method (CSSM) [3], are utilized to realize wideband
DOA estimation. The ISSM estimates the DOAs indepen-
dently and average them over all the bins. The performance
of ISSM may deteriorate with low signal-to-noise ratio (SNR)
frequency bins and coherent sources. The CSSM align the
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signal subspaces by transforming the observation vectors as-
sociated with each bin into the focusing subspace and can deal
with coherent sources by averaging the subspace-aligned co-
variance matrices. Compared with ISSM, CSSM can enhance
DOA resolution and improve the accuracy of DOA estimates
at low SNR. However, CSSM requires an initial DOA esti-
mate and the precision of DOA pre-estimates greatly influ-
ences the accuracy of DOA estimation [4, 5].

Recently, a class of sparse signal representation (SSR)
methods provide a new perspective for wideband DOA es-
timation. The DOA estimation problem can be formulated
as recovering a spatial sparse signal vector or matrix by mini-
mizing the residual norm under sparsity constraint. One of the
most successive `1-norm-based SSR algorithms for DOA esti-
mation is `1-SVD (Singular Value Decomposition) [6], which
reduces the computational complexity by SVD. Hyder and
Mahata [7] present a joint `2,0-norm approximation (JLZA)
method and extend it to wideband DOA estimation. The main
limitation of the `1-SVD and JLZA algorithms is that they
could not jointly use all the subband information to estimate
DOA and therefore lose their performance. More recently,
Liu et al. [8] present a wideband covariance matrix sparse
representation (W-CMSR) method for DOA estimation. The
W-CMSR method uses time domain measurement informa-
tion and has its limitation for spatial nonambiguity because
the spatial aliasing is frequency-dependent. To deal with the
spatial aliasing for SSR problem, Tang et al. [9] shows that
such ambiguity can be removed by using multiple dictionar-
ies, each dictionary corresponding to a judiciously chosen fre-
quency. However, it still does not consider using all the fre-
quency bin information to reduce the spatial ambiguity.

In this paper, we present a new subband information
fusion (SIF) method for wideband DOA estimation. This
method can jointly integrate all the frequency bins together
to estimate a sparse indicative vector (SIV) that is used to
indicate the location of sources. By using the SIF method,
the spatial nonambiguity condition can be extended dramat-
ically compared with the classical beamforming technique.
We then develop the SIF algorithm and compare the SIF al-
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gorithm with the W-CMSR algorithm. The simulation results
show that the proposed algorithm has better performance.

2. STATISTICAL MODEL

Consider a uniform linear array (ULA) of P omnidirectional
sensors is exposed to a wavefield generated by Q far-field
wideband sources in presence of noise. For wideband pro-
cessing, a standard way is to split the time-samples at each
sensor into N segments, where for each segment, K narrow-
band signals are obtained by a bank of narrowband filters or
the discrete Fourier transform (DFT) [5]. Assume that the
frequencies of all related sources overlap from ω0 − B

2 rad/s
to ω0 + B

2 rad/s, where ω0 is the center frequency and B is
the bandwidth of some frequency band where the frequency
bands of all sources intersect. The array output vector for
fixed frequency ωk ∈ [ω0 − B

2 , ω0 + B
2 ], k = 1, . . . ,K, is

formed and can be expressed by

xk,n = Ak(θ)sk,n + wk,n (1)

where xk,n is the P × 1 array measurement vector, sk,n de-
notes theQ×1 source signal vector at frequency ωk and wk,n
represents the P × 1 additive noise vector. Ak(θ) is the man-
ifold matrix at frequency ωk

Ak(θ) = [ak(θ1), . . . , ak(θQ)] (2)

where the steering vector ak(θq) can be written as

ak(θq) =
[
1, e−jωk

d
c sin θq , . . . , e−jωk(P−1) d

c sin θq
]T

(3)

where θq , q = 1, . . . , Q, is the DOA of the q-th source, d is
the distance between the two adjacent sensors, and c is the
speed of the signal propagation.

The DOA estimation appears in (1) is a nonlinear pa-
rameter estimation problem, where the DOA parameter θ =
[θ1, . . . , θQ]T need to be estimated. The sparse representation
model transforms a parameter estimation problem into sparse
spectrum estimation. We denote Θ = {θl}Ll=1 as the set of a
sampling grid of all possible source locations, L � Q. We
assume that the grid is fine enough that Θ can represent the
true source locations exactly or closely. Then, the array out-
put model (1) is changed into

xk,n =

L∑
l=1

ak(θl)vk,l(n) + wk,n (4)

where vk,l(n) and ak(θl) are the visual source and steer-
ing vector corresponding to the l-th grid. We introduce an
overcomplete basis matrix Ak = [ak(θ1), . . . , ak(θL)]. The
sparse representation model in (4) can be represented by the
compact model

xk,n = Akvk,n + wk,n (5)

where vk,n = [vk,1(n), . . . , vk,L(n)]T is the sparse represen-
tation of source vector. The nonzero entries of vk,n represent
true sources and zero otherwise. Assume that the nonzero in-
dexes of vk,n are contained in the set I := {l1, . . . , lQ}. Ob-
viously, vk,lq (n) = sk,q(n), where sk,q(n) denotes the k-th
subband signal radiated from the q-th target at the n-th snap-
shot.

3. WIDEBAND DOA ESTIMATION USING A
SUBBAND INFORMATION FUSION METHOD

3.1. A New SIF Method

From the sparse representation model in (5), it is clear that
the matrices V1, . . . ,VN share the identical sparse structure,
where Vn = [v1,n, . . . , vK,n], n = 1, . . . , N . Let V =
[V1, . . . ,VN ]. The nonzero rows of matrix V indicate the
source locations. The sparse indicative vector employed in
[10, 11] for narrowband DOA estimation can also be used to
represent the sparsity structure of V in wideband processing.
Thus, the estimating of entire matrix V can be avoided. To
develop the SIF method, we introduce an over-complete dic-
tionary [10]

Ψk,n =
[
ak(θ1)v̂k,1(n) · · · ak(θL)v̂k,L(n)

]
, (6)

where

v̂k,l(n) =
(
aHk (θl)aHk (θl)

)−1 aHk (θl)xk,n. (7)

Let us use D ∈ CL×L denote a new dictionary that DHD =
Φ, where

Φ =

K∑
k=1

N∑
n=1

ΨH
k,nΨk,n. (8)

One realization of D is given by the eigenvalue decomposition
(EVD) of the Hermitian matrix Φ. Assume that Φ can be
written as Φ = UΛUH , where U is a unitary matrix whose
columns are composed by L orthonormal eigenvectors and Λ
is a diagonal matrix of eigenvalues. Thus, the dictionary D
has the expression D = UΛ

1
2 . Let M denote the rank of Φ.

We have rank(D) = rank(Φ) = M .
We define a new SIV g which has the same sparsity

structure with V. g can be used to indicate the locations of
sources. Recovering g needs to jointly minimize a residual
term ‖y− Dg‖2 and a `p-norm (0 ≤ p ≤ 1) penalty, which
leads to the SIF method:

min
g
f(g) : f(g) = ‖y− Dg‖2 + λ‖g‖p, (9)

where λ is a regularization parameter, y is a new vector de-
fined by DHy = h,

h =

K∑
k=1

N∑
n=1

ΨH
k,nxk,n. (10)
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If the number of sources is fixed during N snapshots, g is Q-
sparse and ‖g‖0 = Q. The indexes of nonzero elements in g
are contained in the set I which indicates the source locations.
Intuitively, g captures the sparsity structure of y in the basis
of D. Therefore, g can be recovered as sparse as possible
provided that the residual term ‖y− Dg‖2 is minimized. The
problem of DOA estimation can then be solved by recovering
g instead of estimating V.

Note that the derivation of (9) has an equivalent expres-
sion which is given by

arg min
g
f(g)

≡ arg min
g

K∑
k=1

N∑
n=1

‖xk,n −Ψk,ng‖2 + λ‖g‖p. (11)

The above expression (11) shows that all the frequency bins
and snapshots are integrated together to estimate g. We then
find that the over-complete dictionary Ψk,n can only be used
for specific frequency and snapshot in which xk,n can be ex-
pressed as a sparse signal. Yet D includes all the frequency
and snapshot measurements information and therefore (9) is
actually an information fusion formulation for the wideband
DOA estimation problem.

3.2. Nonambiguity Guarantee for the SIF Method

As discussed in [9], the sparse signal representation (SSR)
approaches are generally subject to two kinds of ambiguity.
One is referred as algebraic aliasing, which arises from the
over-completeness of the dictionary. The other is called spa-
tial aliasing, just like the classical beamforming. If the array
spacing d is larger than half the apparent wavelength, it will
be possible to find at least two angles θl and θl′ . The corre-
sponding columns in Ak will be identical.

For the algebraic aliasing-free problem, we investigate the
sufficient condition for the existence of a unique solution to
the noise-free equations y = Dg. The following theorem
shows that the algebraic nonambiguity is guaranteed if the
number of sources satisfies certain condition.

Theorem 1. Consider the equations y = Dg, where D is a
L × L dictionary, y is a L × 1 vector and g is a sparse in-
dicative vector whose nonzero elements indicate the locations
of sources. D and y are defined by DHD = Φ, DHy = h
respectively, where Φ and h is given in (8) and (10). As-
sume that no spatial nonambiguity exists. A unique solution of
sparse indicative vector g is guaranteed if Q ≤ min(d(M +
1)/2e − 1, d(P + NK)/2e − 1) for NK < P and Q ≤
min(d(M + 1)/2e − 1, P − 1) for NK ≥ P , where d·e de-
notes the ceiling operation.

Proof : See [12]. In Subsection 3.1, we convert the mul-
tiple measurement vectors (MMV) problem to a single mea-
surement vector (SMV) problem. The proof of theorem 1 can

use the unique solution condition (see [13], theorem 2.4) for
the SMV problem. At the same time, the unique solution for
y = Dg is under the MMV problem, since it is derived from
the MMV problem.

We then investigate the spatial aliasing problem. Assume
that two angles θl1 and θl2 satisfy

ωkd sin θl1/c = ωkd sin θl2/c+ 2πI, (12)

where I is an arbitrary integer. Let us use θl1 and θl2 to gener-
ate two corresponding columns in dictionary D. If these two
columns are identical, the spatial aliasing occurs. Unlike the
narrowband DOA estimation problem, the spatial nonambi-
guity condition for wideband DOA estimation can be more
relaxed. It is clear that the spatial aliasing is dependent on the
frequency. For the SIF method, all the frequency bin informa-
tion can be combined to reduce the spatial ambiguity, which
leads to the following theorem.

Theorem 2. Assume that the number of sources satisfies the
unique solution condition proposed in theorem 1. Let ∆ω =
ωk − ωk−1. With a ULA interspaced by a unit distance d, the
spatial nonambiguity is guaranteed if d < πc

∆ω , where c is the
propagation speed of the source signal.

Proof : See [12]. The proof of theorem 2 is similar to the
proof of theorem 1 in [9]. We first assume that θl1 is one of
the target angles and θl2 is the spatial aliasing angle, which
lead to the identical column as θl1 in Hermitian matrix Φ. We
then prove that under the condition d < πc

∆ω , θl1 = θl2 holds
and the spatial nonambiguity is guaranteed.

3.3. SIF Algorithm

Consider the following unconstrained problem:

min
g

K∑
k=1

N∑
n=1

‖xk,n −Ψk,ng‖2 + λ‖g‖p. (13)

The problem (13) can be solved by generating a sequence
of iterates {g0, g1, . . .}. For each iteration, the optimization
problem of (13) is given by

gt+1 = 2Π(gt)H−1(gt)h, (14)

where
H(g) = 2ΦΠ(g) + pλI (15)

Π(g) =

 (g2
1 + ε)1−p/2 0

. . .
0 (g2

L + ε)1−p/2

 , (16)

I is aL×L identity matrix, ε is a very small smooth parameter
and the expressions of Φ and h are given in (8) and (10). The
computational complexity of computing (14) can be reduced
by using the conjugate gradient (CG) technique [14, 15]. Let
H−1(g)h be replaced by cg(H(g),h), where cg(H(g),h) is a
CG solution of linear equation H(g)b = h for b = H−1(g)h.
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4. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of SIF algorithm
via various numerical simulations. We consider the same nu-
merical examples given in [8] for ease of comparison. As-
sume that two BPSK signals with central frequency of 70
MHz and bandwidth of 40% impinge on a ULA with 7 sen-
sors. Fig. 1 and Fig. 2 show the DOA estimation results of two
sources from the directions of −10◦ and 10◦ obtained by the
W-CMSR and SIF respectively. We take K = 256, N = 1
and SNR = 0 dB. The parameters p, λ and ε are set to 0.1,
λ = 0.2 × ‖2h‖∞ and ε = 10−18 for the SIF algorithm. ε
can be arbitrary small. In Fig. 1, the interspace d of the ULA
satisfies d = πc/(ω0 + B

2 ). We then extend d to 100 times
in Fig. 2. It can be seen from Fig. 1 that both the W-CMSR
and SIF algorithms perform well. However, the W-CMSR al-
gorithm fails in Fig. 2 while the SIF algorithm still has good
results. Fig. 2 shows that the spatial ambiguity is reduced by
the SIF algorithm.
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Fig. 1. Spatial spectrum of two sources from −10◦ and 10◦

obtained by the W-CMSR and SIF algorithms, P : 7, SNR: 0
dB, grid resolution: 1◦, d: 1.948.

The interval of two adjacent frequencies is ∆ω = 2π in
the simulations. According to the theorem 2, the spatial non-
ambiguity is guaranteed if d < c

2 , c = 3 × 108 is the propa-
gation speed of the signal. As d increases, the SIF algorithm
captures the unique solution of (13). Moreover, the increas-
ing of d makes the columns of dictionary D more and more
uncorrelated. In Fig. 3, the dash line plots the“mismatch” of
the DOA estimate when two sources are close at 4◦ and 10◦.
The DOA estimation result for the dash line in Fig. 3 is 2◦ and
12◦ when d = 1.948. If the interspace d is increased to 100
times, the DOA estimation result exactly matches the source
directions, see Fig. 3 the solid line.
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Fig. 2. Spatial spectrum of two sources from −10◦ and 10◦

obtained by the W-CMSR and SIF algorithms, P : 7, SNR: 0
dB, grid resolution: 1◦, d: 194.8.
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Fig. 3. Spatial spectrum of two sources from 6◦ and 10◦ ob-
tained by the SIF algorithm, P : 7, SNR: 0 dB, resolution 1◦.

5. CONCLUSION

In this paper, we present a new subband information fusion
(SIF) algorithm to solve the wideband DOA estimation prob-
lem. The SIF algorithm utilizes all the frequency bin in-
formation to recover a sparse indicative vector (SIV) itera-
tively. We show that the algebraic ambiguity resulting from
the over-complete dictionary can be alleviated by multiple
measurement vectors. Since the spatial aliasing is frequency-
dependent, the spatial ambiguity due to spatial aliasing can
be reduced by using all the frequency information. By using
the CG method, the computational complexity of the SIF al-
gorithm has order O(L2). The performance of the proposed
algorithm is demonstrated by numerical simulations.
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