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ABSTRACT

This paper considers the estimation of time difference of ar-
rival (TDOA) of multiple sparse sources when the number of
sources is larger than that of the microphones. White Gaus-
sian noise is assumed present at the microphone in addition
to the instantaneously mixed sources. The TDOA estimate is
obtained based on a maximum likelihood (ML) criteria, and
the likelihood is obtained by marginalizing the joint proba-
bility over the sources. Explicit marginalization is mathemat-
ically intractable, thus the joint probability is approximated
as a summation of several Dirac delta functions by assuming
the time-frequency component of the source distribution to be
a complex-valued super Gaussian, and the global maximum
point of the marginalized joint probability is found by Markov
chain Monte Carlo sampling. Experimental results show that
the proposed algorithm outperforms TDOA estimation using
a well-known Gaussian based approximation method in terms
of root-mean-square error (RMSE).

Index Terms— Multiple sound source localization, un-
derdetermined TDOA estimation, blind source separation

1. INTRODUCTION

Multiple sound source localization using microphone array
has received considerable attention for its potential applica-
tions in audio/speech enhancement and recognition, wireless
data communication, object tracking and radar signal detec-
tion. From the TDOA between a pair of microphones, the di-
rections of sound sources can be easily obtained [1]. This pa-
per considers maximum likelihood estimation of TDOA when
the number of sources is more than the number of micro-
phones. This case is often referred to as the underdetermined
case.

Various algorithms for TDOA estimation have been stud-
ied. One of the most popular methods is based on indepen-
dent component analysis (ICA) [2, 3]; however, ICA can be
used only when the number of sources is less than the number
of microphones [4]. Numerous clustering-based algorithms
assuming disjoint orthogonality in the time-frequency (TF)
domain have been proposed to tackle the underdetermined
TDOA problem; however, when you consider the collapse of

the disjoint orthogonality assumption in many realistic situa-
tions, the limitation of these algorithms in producing accurate
estimate of TDOA is not difficult to imagine.

This paper considers a maximum likelihood criterion for
estimating the TDOA in the underdetermined case. The joint
probability of the mixing parameters, observations and source
signals is approximated by a summation of Dirac delta func-
tions assuming sparsity of the sources and then marginalized
over the sources. The global optimum point of marginalized
joint probability is found by Markov chain Monte Carlo sam-
pling.

This paper is organized as follows. Section 2 describes the
problem formulation of underdetermined TDOA estimation.
Section 3 presents the proposed maximum likelihood estima-
tion algorithm. Section 4 provides experimental results, and
finally Section 5 concludes the paper.

2. PROBLEM FORMULATION

2.1. Problem description

Let yj,t be the observation signal from the j-th microphone at
time t and si,t be the i-th source signal for j = 1, . . . , J and
i = 1, . . . , I , where J and I are the number of sources and
microphones, respectively. By anechoic mixing model, yj,t
can be described as

yj,t =

I∑
i=1

λjisi,t−tji + nj,t, j = 1, · · · , J (1)

where λji, tji and nj,t are the attenuation, the time delay from
the i-th source to the j-th microphone and the noise sensed by
the j-th microphone, respectively. Here, I is assumed to be
more than J (I > J).

By applying short-time discrete Fourier transform (STDFT)
to the time domain signal yj,t with sampling rate fs, the fol-
lowing is obtained

Y
(k)
j,m =

I∑
i=1

H
(k)
ji S

(k)
i,m +N

(k)
j,m, k = 0, · · · ,K − 1, (2)

and

H
(k)
ji = λjie

−j 2πk
K τji , (3)
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where S(k)
i,m and N (k)

j,m are the complex-valued STDFT coeffi-
cients of si,t and nj,t, respectively. Here, τji = tjifs.

To express the mixing parameters H(k)
ji with the TDOA

for the i-th source at the chosen microphone pair (j, j′), the
ratio component H̃(k)

ji is given as

H̃
(k)
ji =

H
(k)
ji

H
(k)
j′i

=
λji
λj′i

e−j
2πk
K ∆τ

(j,j′)
i , (4)

where ∆τ
(j,j′)
i = τji − τj′i for j 6= j′, and j′ is the index of

reference microphone. Then, the Equation (2) can be simply
rewritten as vector-matrix form as follows :

Y(k)
m = H̃(k)S̃(k)

m + N(k)
m , (5)

where Y
(k)
m =

[
Y

(k)
1,m, · · · , Y

(k)
J,m

]T
, H̃(k) = [H̃

(k)
ji ]J×I ,

S̃
(k)
m =

[
S̃

(k)
1,m, · · · , S̃

(k)
I,m

]T
, S̃(k)

i,m = H
(k)
j′i S

(k)
i,m is the spa-

tial image of the i-th source on the j′-th microphone, and

N
(k)
m =

[
N

(k)
1,m, · · · , N

(k)
J,m

]T
. Here, the vector of the TDOA

for the sources at all microphone pairs including the reference
microphone can be given as

d=
[
∆τ

(1,j′)
1 , · · · ,∆τ (1,j′)

I , · · · ,∆τ (J,j′)
1 , · · · ,∆τ (J,j′)

I

]T
, (6)

and it should be estimated by a maximum likelihood approach
using only microphone observations Y(k).

2.2. Assumptions

This paper makes three assumptions about the sources :

1. The sources are mutually independent of one another
such that

p(S̃
(k)
1 , · · · , S̃(k)

I ) =

I∏
i=1

p(S̃
(k)
i ). (7)

2. The magnitude of S̃(k)
i,m follows complex-valued super

Gaussian distribution and the phase of S̃(k)
i,m is assumed

to be uniformly distributed in [−π, π) as follows :

p(|S̃(k)
i,m|) = c

β1/c

Γ(1/c)
e−β|S̃

(k)
i,m|

c

, (8)

p(6 S̃
(k)
i,m) =

1

2π
(9)

where the parameters c and β are the shape and the
scale of the distribution, respectively. Also, c, β > 0.
When c = 1, the distribution is Laplacian and when
c = 2, it is Gaussian. With decreasing c, sparsity in-
creases. In this paper, the source prior is assumed to
follow the super-Gaussian, c < 1. Note that the se-
quences of the source coefficients are independent and
identically distributed.

3. Here, N
(k)
m is assumed to be a complex-valued inde-

pendent and identically distributed Gaussian noise with
zero mean and covariance σ2IJ , where IJ denotes the
J × J identity matrix.

2.3. Objective

The objective is to estimate TDOA d via ML criteria as fol-
lows :

d̂ML = arg max
d

p(Y|d). (10)

3. PROPOSED ALGORITHM

3.1. Joint probability

For achieving the objective mentioned in Section 2.3, the joint
probability of random variables H̃, S̃,Y1 should be defined.
It can be expressed as follows :

p(H̃, S̃,Y) = p(H̃)p(S̃)p(Y|H̃, S̃), (11)

where, p(H̃), p(S̃) are prior of H̃, S̃ and p(Y|H̃,S) is likeli-
hood. A super-Gaussian prior on S̃ is assumed as mentioned
in Section 2.2. Under the white Gaussian noise assumption,
the likelihood can be written as

p(Y|H̃, S̃) =

K−1∏
k=0

M∏
m=1

N (Y(k)
m |H̃(k)S̃(k)

m , σ2IJ), (12)

whereN (x|µ,Σ) denotes the multivariate Gaussian distribu-
tion with a mean vector µ and a covariance matrix Σ.

3.2. Marginal likelihood approximation

Since the mixing matrix H̃ is a function of d, the objective
function in Equation (13) can be rewritten as

d̂ML = arg max
d

p(Y|H̃). (13)

With predefined joint probability in Equation (11), the objec-
tive function, the marginal likelihood can be computed as

p(Y|H̃) =

∫
p(S̃)p(Y|H̃, S̃)dS̃. (14)

Since p(S̃)p(Y|H̃, S̃) is very complicated in underdeter-
mined case, the integration in the Equation (14) is intractable.
In [7], p(S̃)p(Y|H̃, S̃) is approximated as a multivariate
Gaussian around the posterior mode. This posterior mode
can be solved by maximizing a posteriori (MAP) criteria
using various algorithms. When S̃ is real-valued, linear pro-
gramming [8] or shortest path [9] algorithm can be used, and
when S̃ is complex-valued, second order cone programming

1Henceforth, the superscript (k) and the subscript m will be omitted for
simplicity.
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[10] or combinatorial algorithm [11] can be adopted. How-
ever, when c < 1, p(S̃)p(Y|H̃, S̃) has ICJ non-differentiable
local maximums and these maximums are located at (b)S̃ for
b = 1, · · · ,I CJ where (I − J) components of S̃ are zeros
where Y = H̃S̃2. Here, (b)S̃ can be obtained by multiplying
the inverse of the J × J submatrix of H̃ to Y. Rather than
approximating p(S̃)p(Y|H̃, S̃) as a single multivariate Gaus-
sian, the approximation considering non-differentiable local
modes is used. In [12], p(S̃)p(Y|H̃, S̃) is approximated as a
summation of the Dirac delta functions, and those Dirac delta
functions are located at (b)S̃ for b = 1, · · · ,I CJ ,

p(S̃)p(Y|H̃, S̃) ≈
ICJ∑
b=1

p(S̃ = (b)S̃)δ(S̃− (b)S̃). (15)

Substituting Equation (15) into Equation (14), the marginal
likelihood can be written as

p(Y|H̃) ≈
K−1∏
k=0

M∏
m=1

ICJ∑
b=1

p(S̃(k)
m = (b)S̃

(k)
m ). (16)

3.3. Markov chain Monte Carlo sampling

The maximum likelihood estimate of TDOA, d̂ML can be es-
timated by solving the optimization problem by maximizing
the approximated objective function in Equation (16). Pro-
posed algorithm uses Markov chain Monte Carlo (MCMC)
sampling to find the global optimum solution.

The solution is solved iteratively, and for initialization,
(0)d is randomly chosen. In the l-th iteration, the can-
didate sample ?d is generated from proposal distribution
q(d|(l−1)d). Here, q(d|d′) is set to be the multivariate Gaus-
sian distribution that the mean vector is d′ and the covariance
matrix is σ2

l II×(J−1), where σl decays exponentially as the
iteration index l increases. Then, the acceptance probability
r of ?d is calculated as

r = min(1,
p(Y|?d)q((l−1)d|?d)

p(Y|(l−1)d)q(?d|(l−1)d)
), (17)

and ?d is accepted with probability of r. (l)d is set to be ?d
when it is accepted or (l−1)d when it is rejected. This iteration
procedure is repeated until (l)d converges.

4. EXPERIMENTS

To evaluate the performance of TDOA estimation algorithm,
the root-mean-square error (RMSE) defined as

RMSE =

√
1

I × (J − 1)

∑
i

∑
j 6=j′
|∆τ (j,j′)

i − ∆̂τ
(j,j′)
i |2 (18)

is adopted.

2
ICJ = I!

(I−J)!J!

Table 1. Experimental conditions

Number of microphones J = 2
Number of sources I = 3 or 4

Mic spacing 0.05m
Source types Female, male speeches,

audio sources with drums,
without drums

Reverberation time 0ms or 130ms or 250ms
Observation noise (SNR) 0dB ∼ 30dB

Sampling rate 16kHz
Signal length 10 sec

STFT frame size 2048samples (128ms)
STFT frame shift 256samples (16ms)

Experiment is performed on synthetically generated data.
Given virtual room environment illustrated in Fig. 1, the
channel impulse responses are generated by the room impulse
response generator [13] with various reverberation times and
directions of the sources. Detailed experimental conditions
are enumerated in Table 1, and four cases of different direc-
tions of the sources are listed in Table 2.

Fig. 1. Virtual room setup

At each frequency bin, whitening the observation vectors
is conducted as a pre-processing step. The shape and scale
parameters of the source distribution are fixed to be c = 0.4

and β = 1, respectively. The attenuation factor of H̃(k)
ji , λji

λj′i

is assumed to be 1.
The performance of proposed algorithm is compared to

the algorithm which approximates p(S̃)p(Y|H̃, S̃) as a single
Gaussian. RMSE measures of two algorithms with various
source types, reverberation times, and angle of the sources are
enumerated in Table 3. Note that listed values are average val-
ues of 10 Monte Carlo runs in each case. As shown, the pro-
posed algorithm estimated TDOA more accurately than the
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Table 3. RMSE measure of proposed method and single Gaussian approximation method (SG) varying source types, reverber-
ation time and angle of sources.

RT60 0ms 130ms 250ms
Case 1 2 3 4 1 2 3 4 1 2 3 4

Female speeches Proposed 0.009 0.006 0.006 0.006 0.063 0.030 0.044 0.047 0.513 0.124 0.147 0.124
SG 0.014 0.006 0.008 0.007 0.073 0.031 0.043 0.053 0.517 0.122 0.148 0.153

Male speeches Proposed 0.012 0.008 0.008 0.005 0.077 0.047 0.033 0.040 0.486 0.149 0.322 0.206
SG 0.011 0.006 0.009 0.010 0.157 0.050 0.036 0.048 0.495 0.151 0.359 0.224

Audio without drum Proposed 0.032 0.012 0.012 0.051 0.245 0.045 0.100 0.090 0.483 0.087 0.264 0.425
SG 0.035 0.015 0.013 0.111 0.260 0.046 0.103 0.175 1.048 0.089 0.269 0.681

Audio with drum Proposed 0.135 0.010 0.009 0.015 0.122 0.135 0.057 0.156 0.839 0.199 0.194 0.431
SG 0.221 0.011 0.016 0.020 0.226 0.135 0.062 0.158 0.848 0.201 0.203 1.061

Table 2. Direction angles generated in the four cases studied
θ1 θ2 θ3 θ4

Case 1 30◦ 45◦ 60◦ x
Case 2 −60◦ 15◦ 75◦ x
Case 3 −75◦ 40◦ 60◦ x
Case 4 −60◦ −30◦ 15◦ 60◦

algorithm with a single Gaussian approximation in noiseless
cases. The experiment with various observation signal-to-
noise ratios (SNR) is also conducted, and the result is shown
in Fig. 2. The white Gaussian noise signals are generated and
added to the observations. Direction of the sources is set to
be ’case 4’(I = 4, J = 2) and 4 different source types in
anechoic environment are considered. In each source type, 10
Monte Carlo runs are conducted, and overall 40 Monte Carlo
runs are averaged in each observation SNR. As shown, the
TDOA estimate obtained by the proposed algorithm is also
more accurate than the TDOA estimate obtained by the algo-
rithm using a single Gaussian approximation in all cases of
observation SNRs.

5. CONCLUSIONS

This paper considers the estimation of TDOA of multiple
sources at the situation that the number of sources is more
than that of microphones and the sources are sparse. An algo-
rithm based on maximum likelihood criteria is proposed and
the likelihood is obtained by marginalizing the joint probabil-
ity over the sources. Mathematically intractable integration
included in marginalization is solved through approximating
the joint probability as a summation of Dirac delta functions.
MCMC sampling is adopted to find the global maximum
point of marginalized joint probability. The experiment is
performed on various environment considering the rever-
beration and noise. Its results show that proposed algorithm
outperforms the algorithm which approximates the joint prob-

Fig. 2. RMSE measure of proposed method and single Gaus-
sian approximation method (SG) varying observation SNR.

ability as a single Gaussian.
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