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ABSTRACT
This paper is devoted to the Cramer Rao bound (CRB) on
the azimuth, elevation and range of a narrow-band near-field
source localized by means of a uniform circular array (UCA),
using the exact expression of the time delay parameter. After
proving that the conditional and unconditional CRB are gen-
erally proportional for constant modulus steering vectors, we
specify conditions of isotropy w.r.t. the distance and the num-
ber of sensors. Then we derive very simple, yet very accurate
non-matrix closed-form expressions of different approxima-
tions of the CRBs.

Index Terms— Cramer Rao bound, near field source lo-
calization, uniform circular array, isotropy.

1. INTRODUCTION

A considerable literature has been dedicated to the CRB on
the direction of arrival (DOA) of narrow-band sources. How-
ever, most of it is limited the far-field case, meaning that a
planar wavefront is impinging on the sensors array. The near-
field assumption implies that the curvature of the waves has to
be taken into account, resulting into more complicated mod-
els parameterized by the source DOAs and range. Hence, we
can identify only very few studies of this kind. Inspired by
the subspace-based DOA algorithms, early ones were based
on an approximate propagation model based on second-order
Taylor expansion of the time delay parameter [1, 2]. Only
lately has the exact time delay formula been used [3] for the
only uniform linear arrays (ULA).

The UCA has been popular with many applications [4, 5,
6] and dedicated estimation algorithms have been proposed
for far-field source localization [12, 13]. Isotropy is a com-
pelling feature of UCA. Not only does it mean that the CRB
on the azimuth and elevation of a single source is uniform for
all azimuths [7], but also that the two estimates are uncorre-
lated and that the CRB is not affected by the indeterminacy
about the wave speed of propagation [8]. We are interested
in analyzing the behavior of UCA for near-field sources, and
in particular to what extend is isotropy maintained. Further-
more, very simple non-matrix closed-form expressions of ap-

proximations of the CRB on the azimuth, elevation and range
are given, where the sixth-order approximation of the CRB
on the azimuth turns out to be very accurate.

The paper is organized as follows. Section 2 formulates
the problem and specifies the data model. Section 3 is devoted
to the CRB derivations. After proving that the so-called con-
ditional and unconditional CRB are generally proportional for
constant modulus steering vectors, we specify conditions of
isotropy w.r.t. the range and the number of sensors. We derive
very simple non-matrix closed-form expressions of different
approximations of the CRB. Finally some numerical illustra-
tions are given in Section 4.

2. DATA MODEL

A UCA is made of P identical and omni-directional sen-
sors C1, · · · , CP located in the (x, y) plane, at a distance
r0 from the origin O and an angle, respectively, θ1, · · · , θP
from [O, x) such that θp

def
= θ − 2π(p−1)

P . It is radiated by a
narrow-band source located in the antenna near-field, whose
position is characterized by azimuth θ, elevation φ and range
r as shown in Fig.1
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Fig.1 Uniform circular array and source DOAs.

Corrupted by an additive noise with complex envelope n(k),
the complex envelope of the signals collected by the array of
sensors is modelled as

xk = ska(α) + nk, k = 1, ...,K,
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where a(α) is the so-called steering vector parameterized by
α = [θ, φ, r]T . Referenced to the origin, its is given by

a(α) = [eiτ1(α), ..., eiτp(α), ..., eiτP (α)]T

where τp(α) = 2π
dp

λ0
with dp = SO − SCp and λ0 is the

propagation wavelength. In fact, τp is given by

τp(α) = 2π
r

λ0

(

1−

√

1− 2
r0
r
cos θp sinφ+

r20
r2

)

.

The usual statistical properties about nk and sk are the
following: (i) sk and nk are independent, (ii) (nk)k=1,...,K

are independent, zero-mean circular Gaussian distributed
with covariance σ2

nIP , (iii) (sk)k=1,...,K are assumed to be
either deterministic unknown parameters (the so-called con-
ditional or deterministic model), or independent zero-mean
circular Gaussian distributed with variance σ2

s (the so-called
unconditional or stochastic model).

3. CRB DERIVATION

3.1. General expression of the CRB

General compact expressions of the CRB, concentrated on the
DOA parameter alone have been derived for these two models
of sources (see e.g. [9] for one parameter per source and [10,
Appendix D] for several parameters per source). Specialized
to a single source with one or several parameters per source,
these expressions CRBdet(α) and CRBsto(α) have all been
studied independently in the literature (see e.g. the recent pa-
pers [11] and [3] which even concludes by ”extension of this
work for stochastic sources is under consideration”).

In fact, it can be proved (proof is not given here by lack of
space) that the expressions CRBdet(α) and CRBsto(α) for
arbitrary parametrization α = [α1, ...., αL]

T of the steering
vector a(α) related to array geometry or polarization such
that ‖a(α)‖2 = P , are proportional1, an issue previously
overlooked. More precisely:

CRBsto(α) =

(

1 +
σ2
n

Pσ2
s

)

CRBdet(α) = [FIM(α)]−1 (1)

where σ2
s

def
= 1

K

∑K
k=1 |s

2
k| for the deterministic model of

sources, with

FIM(α) = cσ
(

PD
H(α)D(α)−D

H(α)a(α)aH(α)D(α)
)

(2)

where cσ
def
=

2Kσ4

s

σ2
n(σ

2
n+Pσ2

s)
and D(α)

def
=
[

∂a(α)
∂α1

, ..., ∂a(α)
∂αL

]

.

In the addressed problem,D(α)=
[

∂a(α)
∂θ ,∂a(α)

∂φ ,∂a(α)
∂r

]

=

[a
′

θ, a
′

φ, a
′

r]. Thanks to (1), we only consider the stochastic
source model.

1Note that (1) is no longer valid for parametrizations for which ‖a(α)‖
depends on α.

3.2. Exact Fisher information matrix

The elements of the FIM (2) are, for i, j = 1, 2, 3, given by

FIMi,j(α) = cσ[P (a
′H
αi

a
′

αj
)− (a

′H
αi

a)(a
′H
αj

a)∗],

where a
′H
αi

a
′

αj
=
∑P

p=1 τ
′

p,αi
τ

′

p,αj
, a

′H
αi

a =
∑P

p=1 τ
′

p,αi
, and

τ
′

p,αi

def
=

∂τp(α)
∂αi

. Consequently, we get

FIM1,1(α) = c
′

σ sin
2 φ



P

P
∑

p=1

u2
p −

(

P
∑

p=1

up

)2




FIM2,2(α) = c
′

σ cos
2 φ



P

P
∑

p=1

v2p −

(

P
∑

p=1

vp

)2




FIM1,2(α) = c
′

σ

sin(2φ)

2

[

P
∑

p=1

up

P
∑

p=1

vp − P
P
∑

p=1

vpup

]

FIM3,3(α) = c
′′

σ



P
P
∑

p=1

(1 + wp)
2 −

(

P
∑

p=1

[1 + wp]

)2




FIM1,3(α) = c
′′′

σ sinφ

[

P
∑

p=1

up

P
∑

p=1

wp − P

P
∑

p=1

upwp

]

FIM2,3(α) = c
′′′

σ cosφ

[

P
∑

p=1

vp

P
∑

p=1

wp − P

P
∑

p=1

vpwp

]

where up
def
= sin θp/

√

βp, vp
def
= cos θp/

√

βp, wp
def
=

ǫvp sinφ − β
−1/2
p , βp

def
= 1 − 2ǫ cos θp sinφ + ǫ2 and

ǫ
def
= r0

r . There, we also define constants c
′

σ
def
= cσ

(

2πr0
λ0

)2

,

c
′′

σ
def
= cσ

(

2π
λ0

)2

and c
′′′

σ
def
= cσ

(

2π
λ0

)2

r0.

Taylor series expansions of 1/βp and 1/
√

βp w.r.t. ǫ =
r0/r, followed by elementary trigonometric relations, show
that all elements of the FIM depend on the azimuth θ only
through the sums

∑P
p=1 cos kθp and

∑P
p=1 sin kθp for k =

1, 2, ..., which can be easily simplified thanks to

P
∑

p=1

eikθp =

{

Peikθ if k/P ∈ N

0 otherwise
(3)

It turns to be that while the FIM is periodic in θ of period
2π/P , as one may expect, it is not constant anymore, i.e. the
UCA is no longer strictly isotropic in the near-field.

3.3. Isotropy of the UCA

We analyze the way isotropy, guaranteed at the antenna far-
field [7], is deteriorated as a result of a decreasing source
range r or a decreasing number of sensors P . Careful ex-
amination of the Taylor expansion of the elements of the FIM

3997



w.r.t. ǫ, where only the θ dependence is retained, yields to

FIMi,j(α) =
∞
∑

k=0

(

P
∑

p=1

g
(i,j)
k (cos θp, sin θp)

)

ǫk, (4)

where g
(i,j)
k is a polynomial expression of cos θp and sin θp

of degree k + 2, k + 1 or k for (i, j = 1, 2), (i = 1, 2, j = 3)
or (i = j = 3) respectively. By linearizing this polynomial,
we have for example for i, j = 1, 2:

g
(i,j)
k (cos θp, sin θp) =

k+2
∑

ℓ=0

c
(i,j)
ℓ,k cos(ℓθp)+

k+2
∑

ℓ=1

s
(i,j)
ℓ,k sin(ℓθp)

where c(i,j)0,k = 0 for odd degrees of g(i,j)k . Then, using (3), fo-
cusing on θ and carefully studying the first terms of the Taylor
expansion in ǫ (4), we obtain

FIMi,j(α) =

⌊(P−3)/2⌋
∑

k=0

bi,j2kǫ
2k +

∞
∑

k=P−2

bi,jk (θ)ǫk (5)

FIMi,j(α) =
∞
∑

k=P−2

bi,jk (θ)ǫk (6)

FIM2,3(α) =
P−1
∑

k=3

bi,jk ǫk +
∞
∑

k=P

bi,jk (θ)ǫk (7)

FIM3,3(α) =

⌊(P−1)/2⌋
∑

k=2

bi,j2kǫ
2k +

∞
∑

k=P

bi,jk (θ)ǫk, (8)

for P ≥ 4 and i = j = 1 or i = j = 2 (5), i = 1, j = 2, 3
(6), where the terms bi,jk and bi,j2k do not depend on θ.

Note that zero-order terms of the block [FIM(α)](1;2,1:2)
derived from (5) and (6) give the FIM(θ, φ) of the far-field
case. Using the decoupling of θ and φ of the far-field case
that we uncover by (6), we have CRBFF(θ) = 1/b1,10 and
CRBFF(φ) = 1/b2,20 .

To illustrate the behavior of the FIM w.r.t. P , FIM1,1(α)
cσcr0 sin2 φ

is given by the following expressions for P = 3, 4, 5, 6:

P

3 1− ǫ2 sinφ cos 3θ + o(ǫ2)

4 1− ǫ2(cos2 φ− sin2 φ sin 4θ) + o(ǫ2)

5 1− ǫ2 cos2 φ− ǫ3 sin3 φ cos 5θ + o(ǫ3)

6 1− ǫ2 cos2 φ− ǫ4(1− 3 sin2 φ+ 2 sin4 φ

− sin4 φ cos 6θ) + o(ǫ4)

with cr0
def
=
(

2π r0
λ0

)2
P 2

2 and where limǫ→0 o(ǫ)/ǫ = 0.

Consequently, from (5)-(8), the following can be concluded:
For a number P of sensors, the FIM of the UCA does not
depend on the azimuth up to the order P − 3 in r0/r. More
precisely, we see from (6), that the parameters θ and (φ, r)
are decoupled up to the order P − 1 in r0/r. Consequently,
the azimuth CRB does not depend on the azimuth up to the

order P − 1 in r0/r, in contrast to the elevation and range
CRBs that require an order smaller or equal to P − 3. So, for
r or P fixed, isotropy increases when P or r increases, re-
spectively, and the azimuth CRB is much less sensitive to the
azimuth than those of the elevation and range.

3.4. Closed-form expression of the CRB

To further improve our understanding of the near-field CRBs,
we investigate different closed-form expressions of the ap-
proximations of the CRB on α. Note that to obtain these
approximations, we have to elaborate a little bit the neces-
sary order of the Taylor expansions of each term of FIM(α)
because the order in ǫ of these terms may be different.

For P > 8, we have proved that2

FIM1,1(α)

cσcr0
= sin2 φ

[

1− ǫ2 cos2 φ+ ǫ4g1(sin
2 φ)

+ǫ6g2(sin
2 φ)

]

+ o(ǫ7)

FIM1,2(α) = o(ǫ7)

FIM1,3(α) = o(ǫ7)

FIM2,2(α)

cσcr0
= cos2 φ

[

1− ǫ2
(

1−
5

2
sin2 φ

)]

+ o(ǫ3)

FIM3,3(α)

cσcr0
=

sin2 φ

16r20

[

sin2 φ+ ǫ2g3(sin
2 φ)

]

ǫ4 + o(ǫ7)

FIM2,3(α)

cσcr0
= −

sinφ cosφ

r0

(

1−
7

8
sin2 φ

)

ǫ3 + o(ǫ3),

with

g1(sin
2 φ)

def
= 1− 3 sin2 φ+ 2 sin4 φ

g2(sin
2 φ)

def
= −1 + 6 sin2 φ− 10 sin4 φ+ 5 sin6 φ

g3(sin
2 φ)

def
= 16− 33 sin2 φ+

35

2
sin4 φ.

This expression of FIM(α) allows us to derive after some
manipulations of FIM−1(α) the following closed-form ex-
pressions of the CRBs:

CRB(θ) = CRBFF(θ)

[

1 + cos2 φ
r20
r2

+sin2 φ cos2 φ
r40
r4

+ h1(sin
2φ)

r60
r6

+ o

(

r70
r7

)]

(9)

CRB(φ) = CRBFF(φ)

[

1+h2(sin
2φ)

r20
r2

+ o

(

r20
r2

)]

(10)

CRB(r)=
16

cσcr0 sin
4φ

r4

r20

[

1+h3(sin
2φ)

r20
r2

+o

(

r20
r2

)]

,(11)

where

CRBFF(θ) = 1/(cσcr0 sin
2 φ)

CRBFF(φ) = 1/(cσcr0 cos
2 φ)

2For P > 6, FIM1,1(α)=cσcr0 sin2 φ[1−ǫ2 cos2 φ+ǫ4g1(sin2 φ)+
o(ǫ5) and FIM1,2(α)=FIM1,3(α)=o(ǫ5) and the other FIM expressions
remain valid.
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denote the CRB on the azimuth and elevation in the far field
case [7], and where we have introduced

h1(sin
2φ)

def
= − sin2 φ+ 3 sin4 φ− 2 sin6 φ

h2(sin
2φ)

def
=

16

sin2 φ
+

39

4
sin2 φ− 27

h3(sin
2φ)

def
= 5−

21

4
sin2 φ.

Using the decoupling between θ and (φ, r), note that the
second-order (resp. fourth-order) expansion in r0/r of
CRB(θ) in (9) is still valid for only P > 4 (resp. P > 6).

Interestingly, when the source is known to be in the (x, y)
plane, we deduce from the FIM(α) for φ = π/2 that

CRB(θ) = CRBFF(θ)

[

1 + o

(

r70
r7

)]

CRB(r) =
16

cσcr0

r4

r20

[

1−
r20
2r2

+ o

(

r20
r2

)]

,

where here CRBFF(θ) = 1/cσcr0 . Note that the first or-
der term r0/r vanishes in all the expressions of the CRB for
P > 6. Furthermore, for a source located in the plane (x, y),
the CRB on the azimuth is very insensitive to the range. This
contrasts with the near field expression of the CRB for the
ULA [3] for which, CRB(θ) includes a first order term in
r0/r and thus is much more sensitive to the range than for
the UCA. Finally, note the simplicity of our closed-form ex-
pressions w.r.t. the complicated non interpretable closed-form
expressions obtained for the ULA [2, 3].

4. ILLUSTRATIONS

In order to characterize the level of isotropy, we introduce a
non-isotropy criterion

ρ = sup
θ

|CRB(θ)− CRB(θ)|

CRB(θ)

(where CRB(θ) denotes the mean of CRB(θ) w.r.t. θ) that
we illustrate in Fig.2 for a UCA with half-wavelength inter-
sensors spacing, and a source emitting at 1 MHz3. This figure
shows that the isotropy is much more sensitive to P than to r.

The validity of some approximate closed-form expres-
sions of the CRB is illustrated for a source located with
an azimuth θ = 70◦ and elevation φ = 70◦. Fig.3 and 4
compare the approximate ratios CRB(θ)/CRBFF(θ) and
CRB(φ)/CRBFF(φ) given by (9) and (10) to the exact ones
and Fig.5 compares the approximate CRB(r) (11) to the ex-
act one. We see from these three figures that the proposed
approximations are very accurate from the ratio r/r0 = 2 for
P = 10 and from r/r0 = 4 for P = 7.

3Note that these characteristics impact only r0, but not the different ratios
of CRB.
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Fig.2 Non-isotropy criterion ρ w.r.t. r and P .
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Fig.3 Approximate and exact ratios CRB(θ)/CRBFF(θ).
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Fig.4 Approximate and exact ratios CRB(φ)/CRBFF(φ).
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Fig.5 Ratio of the approximate CRB(r) to the exact one.
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