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ABSTRACT

Based on the covariance-like fitting criterion we propose a di-
rection of arrival (DOA) estimation algorithm that embeds a
weighting scheme in the objective function without selection
of any hyperparameters. With an assumption of uncorrelated
sources, we formulate the problem of DOA estimation as a
linearly constrained quadratic optimization under power con-
straints. Numerical results show that the proposed method
not only is robust to this assumption but also has the superior
performance in comparison with some other sparsity-driven
methods.

Index Terms— Direction of arrival estimation, sparse re-
covery, weighted ℓ2 minimization, array signal processing

1. INTRODUCTION

Direction of arrival (DOA) estimation is an interesting is-
sue in array processing field, which has wide applications
from electromagnetics to acoustics [1]. Many algorithms
have been proposed for achieving high resolution and high
accuracy of DOA estimation. In general, these algorithms
can be categorized in two classes according to the use of
hyperparameters: hyperparameter-free and hyperparameter-
dependent. Here, the hyperparameter refers to the noise
power, and other user-dependent parameters. In practice,
determining proper values of hyperparameters is usually
difficult to be carried out [2, 3]. Therefore, hyperparameter-
free methods are more attractive in practical applications.

It is well known that Fourier-based spectral analysis tech-
niques (e.g. the Bartlett beamformer) can estimate DOA with-
out any hyprparameters, but they suffer from the Rayleigh
resolution limit [1]. To overcome this disadvantage, the clas-
sical Capon method based on subspace processing has been
exploited to achieve high resolution DOA estimation without
any hyperparameters [4]. Recently, the sparse representation
has been introduced into DOA estimation [5, 6], and design-
ing high-performance sparsity-driven DOA estimator without
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knowledge of hyperparameters is also challenging [3, 7, 8].
Sparse Iterative Covariance-based Estimation (SPICE) does
not require any hyperparameter and ensures reliable DOA es-
timates with global convergence [3,7]. However, it is reported
in [9] that the accuracy of SPICE is unsatisfactory. By em-
ploying the maximum likelihood principle, LIKelihood-based
Estimation of Sparse parameters (LIKES) has been derived to
improve SPICE. LIKES performs better than SPICE in term
of accuracy and resolution at cost of increased computational
burden [8, 9].

In this paper, we propose a covariance-like fitting algo-
rithm for DOA estimation under power constraints without
selection of hyperparameters. The covariance matrix of the
measurements is firstly represented in the sparse form, and
then the DOA estimation can be regarded as a fitting problem
with a overcomplete basis matrix. The hyperparameter selec-
tion is avoided by using power constraints on the estimated
spectrum. Furthermore, we devise a Capon-like cepstrum (in
the context, the cepstrum means the reciprocal of the spec-
trum) weight to prompt sparsity so that the peaks of the esti-
mated spatial spectrum are more likely to be the positions of
true DOAs. That is to say, the proposed method embeds the
equivalent weighted ℓ2 norm in the objective function. From
the methodological point of view in the area of sparse rep-
resentation the weighted ℓ2 norm minimization is conducive
to sparsity enhancement [10–13]. Moreover, considering un-
correlated sources we formulate DOA estimation as a lin-
early constrained quadratic optimization problem. Numer-
ical examples demonstrate that the proposed algorithm can
obtain more accurate DOA estimates than that of ℓ1-SVD [5],
SPICE [7], and CW ℓ2,1 [14].

This paper is organized as follows. In the next sec-
tion, we introduce the background and the model about the
covariance-like fitting approach. In Section 3, we formulate a
convex optimization function to resolve the DOA estimation
problem. In Section 4, numerical experiments are provided
for illustrating the performance of the proposed method. A
conclusion is given in Section 5.

2. SIGNAL MODEL

Suppose that there are K far-field narrowband signals {sk(t),
k = 1, 2, · · · ,K}, with the common center frequency f0
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impinging on the array from distinct directions {θk, k =
1, 2, · · · ,K}. The measurements can be described in vector
form as:

y(t) = As(t) + n(t), t = 1, 2, · · · , T., (1)

where the measurements y(t) = [y1(t), · · · , yM (t)]T ∈
CM×1, the source signal vector s(t) = [s1(t), · · · , sK(t)]T ∈
CK×1, and the noise vector n(t) = [n1(t), · · · , nM (t)]T ∈
CM×1, M denotes the number of sensors, the notation [·]T
denotes the transposition. The matrix A ∈ C

M×K is the ar-
ray response matrix given by A = [a(θ1), · · · , a(θK)] with
a(θk) = [1, ej2πf0dsin(θk)/c, · · · , ej(M−1)2πf0dsin(θk)/c]T ,
where c and d denote the propagation speed and the sensor
spacing, respectively. The vector n(t) is an additive noise
vector with zero-mean. Without loss of generality, n(t) is as-
sumed to be uncorrelated with s(t).

Assuming the source signals are uncorrelated and the ob-
served space is uniformly sampled with N angular grids, thus
the covariance matrix of the measurements y(t) can be ex-
pressed as [7]:

R = E[y(t)yH(t)]

=

N
∑

n=1

pnana
H
n +RN

, ΦPΦH, (2)

where

Φ , [a1, · · · , an, · · · , aN , IM ] = [Ā, IM ], (3)

Ā = [a1, · · · , an, · · · , aN ], (4)
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(6)

IM is a M ×M identity matrix, and the sign (·)H denotes the
conjugate transpose, pN+1 = σ2

1 , · · · , pN+M = σ2
M .

Ideally, if and only if θn = θk, pn > 0 for n ≤ N . In
other words, the DOA estimation can be achieved by deter-
mining the peaks of the spatial spectrum p for n ≤ N , where
p = [p1, · · · , pN+M ]T ∈ R(N+M)×1 corresponds to the di-
agonal elements of P.

3. THE PROPOSED ALGORITHM

Utilizing the eigenvalue decomposition of R, we have

R = UΣUH, (7)

where the columns of U denote the eigenvectors of R and
UUH = UHU = IM , the matrix Σ is a diagonal matrix and
its diagonal elements are the eigenvalues of R.

Substituting (7) into (2) yields the following results:

UΣUH = ΦPΦH, (8)

IM = Σ− 1

2UHΦPΦHUΣ− 1

2 . (9)

Now, we devise a new DOA estimation algorithm by em-
ploying the covariance-like fitting criterion:

minpn≥0 ‖IM −Σ− 1

2UHΦPΦHUΣ− 1

2 ‖2F

s.t.

N+M
∑

n=1

pn = trace(R)/M, (10)

where the sign trace(·) and ‖ · ‖F denote the trace of matrix
and the Frobenius norm, respectively.

The objective function in (10) can be written with the trace
of matrix as:

‖IM −Σ− 1

2UHΦPΦHUΣ− 1

2 ‖2F
= M − 2trace(PB) + trace(PBPB),

(11)

where B = ΦHUΣ− 1

2Σ− 1

2UHΦ = ΦHR−1Φ. Thus, (10)
can be written as:

minpn≥0 trace(PBPB)− 2trace(PB)

s.t.

N+M
∑

n=1

pn = trace(R)/M. (12)

Note that the minimization problem (12) can be simplified
as a linearly constrained quadratic problem by utilizing the
diagonal matrix property of P:

minpn≥0 pTDp− 2dTp

s.t. 1Tp = trace(R)/M, (13)

where D = B ⊙ B∗, d is a real value vector that corre-
sponds to the diagonal elements of B, 1 is the vector of
all ones, and the sign (·)∗ and ⊙ denote the conjugate and
the Hadamart product, respectively. In practice, we have to
replace the covariance R with the sampling covariance R̂,
where R̂ = (1/T )

∑T
t=1 y(t)y

H(t). Here, we employ the
CVX package [15] to implement the quadratic optimization
problem. We leave an effective computational procedure that
is tailored for this problem to further work.

In order to compare with the Capon cepstrum, we define
the Capon-like cepstrum wn,m as below:

wn,m = |aHnUΣ−1UHam| = |aHnR−1am|. (14)
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If and only if n = m, wn,m becomes the Capon cepstrum
wn,n.

Substituting (14) into the objective function of (13) yields
the following result:

f(p) = pTDp− 2dTp

=

N+M
∑

n=1

N+M
∑

m=1

w2
n,mpnpm − 2

N+M
∑

n=1

wn,npn

=

N+M
∑

n=1

N+M
∑

m 6=n

w2
n,mpnpm

+

N+M
∑

n=1

wn,npn(wn,npn − 2). (15)

From the second term of (15) , it is noted that the Capon
cepstrum wn,n and the corresponding spectrum element pn
are linked together. In addition, for the first term of (15)
the Capon-like cepstrum wn,m can be regraded as the cor-
responding weight on pn and pm, where the Capon-like cep-
strum has similar property with the Capon cepstrum (see Ap-
pendix for details). This means that smaller weights are ap-
pointed to these positions that more likely correspond to the
DOAs, which is helpful to improve the sparseness of the so-
lution as reported in [10–13].

Although the source signals are assumed to be spatially
uncorrelated in (2), the proposed method still can deal with
the correlated source case. It is easy to deduce this conclusion
as done in [7, 16]. In next section, we demonstrate this fact
with numerical examples.

4. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of the pro-
posed method with some numerical examples. The results of
several sparse signal recovery methods, i.e.,ℓ1-SVD, SPICE,
and CW ℓ2,1, are also provided for comparison. In all exper-
iments we consider a uniformly-spaced linear array (ULA)
composed of M = 10 sensors with a spacing of d = c/(2f0).
The angle interval [−90◦, 90◦] is uniformly sampled with
1801 grids.

In the first experiment, four uncorrelated sources with the
same amplitude are impinging on the array from {−12◦, 18◦,
26◦, 36◦}. As shown in Fig.1, the proposed method can ob-
tain more accurate estimates than that of ℓ1-SVD, CW ℓ2,1,
and SPICE, especially for relatively high Signal Noise Ra-
tio (SNR). Although CW ℓ2,1 and the proposed method has a
similar performance when SNR is lower, it is noted that the
former requires some hyperparameters 1, and the latter does

1For adjusting the sparseness of the solution ℓ1-SVD and CW ℓ2,1 have to
use the noise power and a user-dependent parameter (i.e., the confidence level
of the estimated noise energy), which results in the performance degradation
providing these hyperparameters are improper.
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Fig. 1. RMSE versus SNR. The number of snapshots is 200,
the number of sensors is 10, the sources is uncorrelated, and
DOAs:{−12◦, 18◦, 26◦, 36◦}, 500 Monte Carlo trials.

not. In addition, as can be seen from Fig.2, when the num-
ber of snapshots is very few, ℓ1-SVD and CW ℓ2,1 can obtain
higher accuracy with proper hyperparameters. With increas-
ing the number of snapshots, the performance of the proposed
method exceeds that of ℓ1-SVD and CW ℓ2,1. Furthermore, in
contrast to SPICE that also does not require the hyperparam-
eters, the proposed method performs better when the number
of snapshots becomes larger.

In the second experiment, we plot the estimated spatial
spectrum for two correlated sources that have the same am-
plitude with correlation coefficient of 0.8. It can be seen that
the peaks over 200 Monte carlo trials concentrate on the true
DOA positions. This shows that the proposed method is ro-
bust to the assumption of uncorrelated sources and works well
for correlated source scenario.

5. CONCLUSION

We present a DOA estimation method by using the Capon-
like weighted ℓ2 minimization scheme. The hyperparameter
selection is avoided by covariance fitting under power con-
straints. Numerical experiments demonstrate that the pro-
posed method outperforms ℓ1-SVD, SPICE, and CW ℓ2,1 for
uncorrelated sources and works well for correlated sources.
Future work includes the theoretical performance analysis
and the way of computational complexity reduction.

6. APPENDIX

In this Appendix, we try to confirm the Capon-like cepstrum
wn,m has the similar property with the Capon cepstrum. Here,
The “similar property” means that wn,m < wm,m if θn is the
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Fig. 2. RMSE versus number of snapshots. SNR is 10dB,
the number of sensors is 10, the sources is uncorrelated, and
DOAs:{−12◦, 18◦, 26◦, 36◦}, 500 Monte Carlo trials.

true DOA and θm is not. Let vn , UHan and vm , UHam,
we have

wn,m = |aHnUΣ−1UHam|

= |
M
∑

i=1

vinv
i
m

λi
|

≤
M
∑

i=1

|vin|
λ
1/2
i

|vim|
λ
1/2
i

≤

√

√

√

√

M
∑

i=1

|vin|2
λi

√

√

√

√

M
∑

i=1

|vim|2
λi

=

√

|aHnUΣ−1UHan|
√

|aHmUΣ−1UHam|
=

√
wn,n

√
wm,m (16)

where λi is the ith diagonal elements of Σ, vin and vim denote
the ith elements of vn and vm, respectively.

Note that 0 < wn,n < wm,m since θn is the true DOA
and θm is not, so from (16) we have

wn,m ≤ √
wn,n

√
wm,m

<
√
wm,m

√
wm,m

= wm,m. (17)
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