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ABSTRACT

High-resolution parameter estimation algorithms designed to bene-

fit from the presence of non-circular (NC) source signals allow for

an increased identifiability and a lower estimation error. In this pa-

per, we present a 1-D first-order performance analysis of the NC

standard ESPRIT and NC Unitary ESPRIT estimation schemes for

strictly second-order (SO) non-circular sources, where NC Unitary

ESPRIT has a lower complexity and a better performance in the

low signal-to-noise ratio (SNR) regime. Our derived expressions are

asymptotic in the effective SNR and explicit in the noise realizations,

i.e., no assumptions about the noise statistics are necessary. As a

main result, we show that the asymptotic performance of both NC

ESPRIT-type algorithms is identical in the effective SNR and that

NC Unitary ESPRIT is even applicable to array geometries without

a centro-symmetric structure as required for Unitary ESPRIT.

Index Terms— Performance analysis, Unitary ESPRIT, widely-

linear processing, non-circular sources, DOA estimation.

1. INTRODUCTION AND STATE OF THE ART

Estimating the directions of arrival (DOA) of incident signals cap-

tured by a sensor array has long been of great research interest, given

its importance in a variety of signal processing applications such

as radar, sonar, biomedical imaging, and wireless communications.

Among other subspace-based parameter estimation schemes, stan-

dard ESPRIT [1] and Unitary ESPRIT [2] are some of the most pow-

erful estimators due to their high-resolution capabilities and their low

complexity as they provide closed-form estimates.

Since the development of the first parameter estimation algo-

rithms, the assessment of their analytical performances has con-

stantly been demanded. The two most prominent strategies have

been proposed in [3] and [4]. The derivations in [3] analyze the dis-

tribution of the eigenvectors of the sample covariance matrix, which

is a complex methodology that requires strong Gaussianity assump-

tions on the source symbols and the noise, and is only asymptotic in

the sample size. In contrast, [4] provides a first-order approximation

of the estimation error caused by the perturbed subspace estimate

due to a small noise contribution. Unlike [3], it is asymptotic in

the effective signal-to-noise ratio (SNR), i.e., the result becomes

accurate as either the number of snapshots or the SNR approaches

infinity, and no assumptions about the statistics of the signals or the

noise are necessary. However, for the mean squared error (MSE)

expressions, [4] assumes circular symmetry of the noise distribution.

In [5], the authors have extended the framework of [4] to the case
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of multi-dimensional (R-D) parameter estimation and have derived

MSE expressions that only require the noise to be zero-mean with-

out any assumptions about its statistics. Perturbation analyses for a

tensor-based subspace estimation scheme and Tensor-ESPRIT have

been presented in [6] and [7], respectively.

Recently, a number of improved subspace-based parameter es-

timation schemes, e.g., NC MUSIC [8], NC Root-MUSIC [9], NC

standard ESPRIT [10] and NC Unitary ESPRIT [11] were developed

to take advantage of the strict second-order (SO) non-circularity of

a class of source signals also referred to as rectilinear signals [12].

Examples of such signals are BPSK, Offset-QPSK, PAM, and ASK-

modulated signals. By applying widely-linear (WL) processing,

which virtually doubles the array aperture, the estimation error

of the aforementioned algorithms is significantly reduced and the

number of detectable sources is doubled. The performance of NC

MUSIC has been investigated in [8], [13] and [14]. However, a per-

formance analysis of NC standard ESPRIT and NC Unitary ESPRIT

has not been reported in the literature.

In this paper, we further extend [5] by incorporating WL prepro-

cessing for strictly SO non-circular sources and present an analytical

performance assessment for 1-D NC standard ESPRIT and 1-D NC

Unitary ESPRIT. For both algorithms, we resort to least squares (LS)

to solve the shift invariance equations. We find the explicit first-order

expansion for the estimation error in terms of the noise realization

and generic MSE expressions, where we only assume that the noise

has a zero mean, but no assumptions about the noise statistics are

needed; the noise could also be non-Gaussian or non-circular. More-

over, we prove that NC standard ESPRIT and NC Unitary ESPRIT

show the same asymptotic performance in the effective SNR and

that NC Unitary ESPRIT does not require a centro-symmetric array

structure as is the case for Unitary ESPRIT. Extensions to multiple

dimensions [5] and the integration of structured least squares as in

[15] are also possible.

2. DATA MODEL

Let a shift-invariance-structured sensor array composed of M ele-

ments receive narrowband signals from d far-field sources. Consid-

ering N subsequent snapshots, the noisy measurement data can be

modeled as

X = AS +N ∈ C
M×N , (1)

where A = [a(µ1), . . . ,a(µd)] ∈ C
M×d is the array steering ma-

trix, which consists of the array steering vectors a(µi) correspond-

ing to the i-th spatial frequency with i = 1, . . . , d, S ∈ C
d×N

represents the zero-mean source symbol matrix and N ∈ C
M×N

contains the samples of the additive sensor noise. Due to the assump-

tion of strictly SO non-circular sources, where the complex symbol
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amplitudes lie on a line in the I/Q diagram, we can decompose the

source symbol matrix as [11]

S = ΨS0, (2)

where S0 ∈ R
d×N is a real-valued symbol matrix and Ψ =

diag{ejϕi}di=1 contains arbitrary complex phase shifts on its diago-

nal that are usually different for each received signal.

3. REVIEW OF NC STANDARD ESPRIT

In this section, we briefly review the NC standard ESPRIT algorithm

[10] but extend it from the uniform linear array (ULA) case to arbi-

trarily formed shift-invariant array geometries. Then, these results

serve as a basis for the presented perturbation analysis.

In order to take advantage of the benefits associated with non-

circular source signals, we apply widely-linear processing and define

the augmented measurement matrix X(nc) according to [11] as

X
(nc) =

[
X

ΠMX∗

]

∈ C
2M×N , (3)

where ΠM is the M×M exchange matrix with ones on its antidiag-

onal and zeros elsewhere, which is used to facilitate the real-valued

implementation of NC Unitary ESPRIT. The expansion of (3) using

(1) and (2) gives

X
(nc) =

[
AS

ΠMA∗S∗

]

+

[
N

ΠMN∗

]

=

[
A

ΠMA∗
Ψ

∗
Ψ

∗

]

S +

[
N

ΠMN∗

]

(4)

= A
(nc)

S +N
(nc) = X

(nc)
0 +N

(nc), (5)

where X
(nc)
0 ∈ C

2M×N is the unperturbed augmented measure-

ment matrix and we have used the fact that S0 = Ψ
∗S in (4).

Equation (5) shows that (3) can be written similarly to (1), where

the extended dimensions of A(nc) ∈ C
2M×N can be interpreted as

a virtual doubling of the sensor elements, which improves the esti-

mation performance and doubles the number of detectable sources.

It can then be shown that if the array is shift-invariant, i.e.,

J1AΦ = J2A, (6)

where J1 and J2 ∈ R
M(sel)

×M are the selection matrices for the

first and the second subarray, and Φ = diag{[ejµ1 , . . . , ejµd ]} ∈

C
d×d contains the spatial frequencies to be estimated, then A(nc)

also possesses the shift invariance property

J
(nc)
1 A

(nc)
Φ = J

(nc)
2 A

(nc), (7)

where

J
(nc)
1 =

[
J1 0

0 ΠM(sel)J2ΠM

]

∈ R
2M(sel)

×2M , (8)

J
(nc)
2 =

[
J2 0

0 ΠM(sel)J1ΠM

]

∈ R
2M(sel)

×2M . (9)

Based on the noisy augmented data model (5), we estimate the

signal subspace Û
(nc)
s ∈ C

2M×d by computing the d dominant

left singular vectors of X(nc). As A(nc) and Û
(nc)
s span approxi-

mately the same column space, we can find a non-singular matrix

T ∈ C
d×d such that A(nc) ≈ Û

(nc)
s T . Using this relation, the shift

invariance equation (7) can be expressed in terms of the estimated

signal subspace yielding

J
(nc)
1 Û

(nc)
s Υ ≈ J

(nc)
2 Û

(nc)
s (10)

with Υ = TΦT−1. Often, the unknown matrix Υ is estimated

using least squares (LS), i.e.,

Υ̂ =
(

J
(nc)
1 Û

(nc)
s

)+

J
(nc)
2 Û

(nc)
s ∈ C

d×d, (11)

where + stands for the Moore-Penrose pseudo inverse. Finally, the

spatial frequency estimates are obtained by µ̂i = arg{EVi{Υ̂}}, i =

1, . . . , d, where EVi{Υ̂} is the i-th eigenvalue of Υ̂.

4. PERFORMANCE OF NC STANDARD ESPRIT

To obtain a first-order perturbation analysis of the subspace estimate,

we adopt the analytical framework proposed in [4], which derives an

explicit first-order error expansion assuming that a desired signal is

distorted by an additive perturbation. This perturbation is determin-

istic and we only assume that it is small compared to the desired

signal. Thus, no assumptions about its statistics such as Gaussianity

or non-/circular symmetry are made. It is evident that the augmented

measurement matrix in (5) does not affect the assumption that only

a small noise perturbation is observed. Hence, we can apply the

concept of [4] directly to the augmented measurement matrix in (5).

The results are asymptotic in the effective SNR and explicit in the

noise term N (nc). As in [4], we develop a first-order subspace er-

ror expansion to find a corresponding first-order expression for the

parameter estimation error.

Based on (5), we can express the SVD of the noise-free obser-

vations X
(nc)
0 as

X
(nc)
0 =

[

U
(nc)
s U

(nc)
n

] [

Σ
(nc)
s 0

0 0

] [

V
(nc)
s V

(nc)
n

]H

,

(12)

where U
(nc)
s ∈ C

M×d, U
(nc)
n ∈ C

M×(M−d), and V
(nc)
s ∈ C

N×d

span the signal subspace, the noise subspace, and the row space re-

spectively, and Σ
(nc)
s ∈ C

d×d contains the non-zero singular val-

ues on its diagonal. Next, we write the perturbed signal subspace

estimate of Û
(nc)
s from the previous section as Û

(nc)
s = U

(nc)
s +

∆U
(nc)
s , where ∆U

(nc)
s denotes the estimation error.

From [4] and its application to (5), we get the first-order approx-

imation

∆U
(nc)
s = U

(nc)
n U

(nc)H

n N
(nc)

V
(nc)
s Σ

(nc)−1

s +O{∆2}, (13)

where ∆ = ‖N (nc)‖, and ‖ · ‖ represents an arbitrary norm. Equa-

tion (13) models the leakage of the noise subspace spanned by the

columns of U
(nc)
n into the signal subspace due to the effect of the

noise. The perturbation within the signal subspace U
(nc)
s provided

in [16], [17] is not taken into account as it does not have an impact

on the performance of NC standard ESPRIT.

For the estimation error of the i-th spatial frequency obtained by

the LS solution in (11), we follow the lines of [4] to obtain

∆µi = Im

{

p
T
i

(

J
(nc)
1 U

(nc)
s

)+ [

J
(nc)
2 /λi

−J
(nc)
1

]

∆U
(nc)
s qi

}

+O{∆2},

(14)

where λi = ejµi is the i-th eigenvalue of Υ, qi represents the i-
th eigenvector of Υ and the i-th column vector of the eigenvector
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matrix Q, and pT
i is the i-th row vector of P = Q−1. Hence, the

eigendecomposition of Υ is given by

Υ = QΛQ
−1, (15)

where Λ contains the eigenvalues λi on its diagonal. Then, by in-

serting (13) into (14), we can write the first-order approximation for

the estimation errors ∆µi explicitly in terms of the noise perturba-

tion N (nc).

In order to derive an analytical expression for the MSE of NC

standard ESPRIT, we resort to [5]-[7], in which the authors prove

that the MSE only depends on the SO statistics of the noise, i.e.,

the covariance matrix and the pseudo-covariance matrix, assuming

the noise only to be zero-mean. Note that the physical noise N can

be potentially non-circular. As the widely-linear transformation in

(3) does not violate the zero-mean assumption, [5] is directly ap-

plicable once the corresponding SO statistics are found. Thus, if

n(nc) = vec{N (nc)} ∈ C
2MN×1, we state that for the covariance

matrix R
(nc)
nn = E{n(nc)n(nc)H} ∈ C

2MN×2MN and the pseudo-

covariance matrix C
(nc)
nn = E{n(nc)n(nc)T } ∈ C

2MN×2MN , the

MSE for the i-th spatial frequency is given by

E
{
(∆µi)

2} =
1

2

(

r
(nc)H

i W
(nc)∗

R
(nc)T

nn W
(nc)T

r
(nc)
i

−Re
{

r
(nc)T

i W
(nc)

C
(nc)T

nn W
(nc)T

r
(nc)
i

})

+O{∆2},
(16)

where

r
(nc)
i = qi ⊗

([(

J
(nc)
1 U

(nc)
s

)+ (

J
(nc)
2 /λi − J

(nc)
1

)]T

pi

)

and

W
(nc) =

(

Σ
(nc)−1

s V
(nc)T

s

)

⊗
(

U
(nc)
n U

(nc)H

n

)

.

In the next step, we derive the covariance matrix and the

pseudo-covariance matrix of the augmented noise contribution

n(nc) = vec{N (nc)} needed in (16). To this end, we use the

commutation matrix KM,N of size MN × MN , which satisfies

[18]

KM,N · vec{A} = vec{AT } (17)

for arbitrary matrices A ∈ C
M×N . We first expand n(nc) as

n
(nc) = vec{N (nc)} = vec

{[
N

ΠMN∗

]}

(18)

= K
T
2M,N

[
vec{NT }

vec{(ΠMN∗)T }

]

(19)

= K
T
2M,N

[
KM,N · vec{N}

KM,N · vec{ΠMN∗}

]

= K
T
2M,N (I2 ⊗KM,N )

︸ ︷︷ ︸

[
vec{N}

vec{ΠMN∗}

]

= K̃ ·

[
vec{N}

vec{ΠMN∗}

]

, (20)

where K̃ is of size 2MN×2MN and we have applied property (17)

to equation (18) and (19). By defining n = vec{N} ∈ C
MN×1 and

using the property vec{AXB} = (BT ⊗A)·vec{X} for arbitrary

matrices A, B, and X of appropriate sizes, we can formulate (20)

as

n
(nc) = K̃

[
n

(IN ⊗ΠM )n∗

]

. (21)

This enables us to express the SO statistics of n(nc) by means of

the covariance matrix Rnn = E{nnH} and the pseudo-covariance

matrix Cnn = E{nnT } of the physically present noise component

n. Thus, we get

R
(nc)
nn = E{n(nc)

n
(nc)H} (22)

= K̃

[
Rnn Cnn(IN ⊗ΠM )

(IN ⊗ΠM )C∗

nn (IN ⊗ΠM )R∗

nn(IN ⊗ΠM )

]

K̃
H

and

C
(nc)
nn = E{n(nc)

n
(nc)T } (23)

= K̃

[
Cnn Rnn(IN ⊗ΠM )

(IN ⊗ΠM )R∗

nn (IN ⊗ΠM )C∗

nn(IN ⊗ΠM )

]

K̃
T .

In the special case of white Gaussian circularly symmetric noise with

Rnn = σ2
nIMN and Cnn = 0MN , (22) and (23) simplify to

R
(nc)
nn = σ2

nI2MN and C
(nc)
nn = σ2

n(IN ⊗Π2M ). (24)

5. PERFORMANCE OF NC UNITARY ESPRIT

So far, we have only derived the explicit first-order estimation error

approximation and the MSE expression for NC standard ESPRIT.

In this section, we investigate the analytical performance of NC

Unitary ESPRIT. The Unitary ESPRIT algorithm requires the sensor

array to be centro-symmetric and shift-invariant, and it includes

forward-backward-averaging (FBA) and the transformation into the

real-valued domain as preprocessing steps [2], [19]. However, as

the analytical expressions for NC Unitary ESPRIT are asymptotic

in the SNR, it can be shown that the latter transformation has no

impact on the performance at high SNRs. We omit this proof due

to the space limitations. Hence, the asymptotic performance of NC

Unitary ESPRIT is found once FBA has been taken into account.

FBA is performed by replacing the noise-corrupted NC mea-

surement matrix X(nc) ∈ C
2M×N by the augmented measurement

matrix X(nc−fba) ∈ C
2M×2N defined by

X
(nc−fba) =

[

X(nc)
Π2MX(nc)∗

ΠN

]
. (25)

The next result is stated in the following theorem:

Theorem 1. Applying FBA to the noisy augmented measurement

matrix X(nc) does not improve the signal subspace estimate.

Proof. To show this result, we first expand (25) by using (3), which

yields

X
(nc−fba) =

[
X XΠN

ΠMX∗
ΠMX∗

ΠN

]

. (26)

The Gram matrix Z = X(nc−fba)X(nc−fba)H is then given by

Z =

[
X XΠN

ΠMX∗
ΠMX∗

ΠN

] [
XH XT

ΠM

ΠNXH
ΠNXT

ΠM

]

= 2 ·X(nc)
X

(nc)H . (27)

Thus, the matrices X(nc−fba) and X(nc) contain the same column

spaces, which completes the proof.

As the real-valued transformation in NC Unitary ESPRIT only

affects the performance at low SNRs, we can therefore conclude that

the asymptotic performance of NC standard ESPRIT and NC Uni-

tary ESPRIT for strictly SO non-circular sources is the same in the

effective SNR.
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Next, we investigate the required properties of the array geom-

etry for NC Unitary ESPRIT. Unitary ESPRIT is only applicable to

shift-invariant antenna arrays with a centro-symmetric structure, i.e.,

the array is symmetric with respect to its centroid. However, for NC

Unitary ESPRIT, we can formulate the theorem:

Theorem 2. Unlike Unitary ESPRIT, its extension NC Unitary ES-

PRIT does not require a centro-symmetric array structure but only

the shift invariance property (6).

Proof. An array is called centro-symmetric if its array steering ma-

trix Ac satisfies [2]

ΠMA
∗

c = Ac∆c, (28)

where ∆c ∈ C
d×d is a unitary diagonal matrix. Assuming that A

satisfies (6) but not necessarily (28), we have

Π2MA
(nc)∗ =

[
0 ΠM

ΠM 0

] [
A∗

ΠMAΨΨ

]

=

[
AΨΨ

ΠMA∗

]

=

[
A

ΠMA∗
Ψ

∗
Ψ

∗

]

ΨΨ = A
(nc)

∆c, (29)

which completes the proof as the centro-symmetry of A is not re-

quired.

This result shows that the virtually augmented array steering ma-

trix always exhibits centro-symmetry even if the physical sensor ar-

ray is not centro-symmetric. Hence, NC Unitary ESPRIT can be

applied to a broader variety of array geometries.

6. SIMULATION RESULTS

In this section, we show simulation results to validate the asymp-

totic behavior of the presented performance analysis of NC standard

ESPRIT and NC Unitary ESPRIT. We compare the results found an-

alytically with the empirical estimation errors obtained by averaging

over Monte Carlo trials. We employ a ULA consisting of M = 10
isotropic sensor elements with interelement spacing δ = λ/2 and

assume that d = 3 sources with unit power and real-valued symbols

drawn from a Gaussian distribution impinge on the array from the

spatial frequencies µ1 = 0.25, µ2 = 0.5, and µ3 = 0.75. More-

over, we assume white Gaussian circularly symmetric sensor noise

according to (24). The curves showing the root mean squared error

(RMSE) of the empirical simulations (“emp”) for NC standard ES-

PRIT (NC SE) and NC Unitary ESPRIT (NC UE) were found by

averaging over 10000 Monte Carlo trials. The square root of the an-

alytical MSE expression (16) is denoted as (“ana”). Furthermore,

we compare our results to standard ESPRIT (SE), Unitary ESPRIT

(UE), and the deterministic Cramér-Rao bound for strictly SO non-

circular sources [20].

Fig. 1 illustrates the RMSE versus the SNR, where N = 20,

and the sources have a pair-wise correlation of ρ = 0.9 and a uni-

formly distributed correlation phase in the interval [0, 2π]. The non-

circularity phases contained in Ψ are given by ϕ1 = 0, ϕ2 = π/2,

and ϕ3 = π/4. It is apparent that the analytical results agree with

the empirical estimation errors as the SNR increases. This also val-

idates that the asymptotic performance of NC standard ESPRIT and

NC Unitary ESPRIT is the same as both coincide with the analytical

curve at high SNRs.

In Fig. 2, we depict the RMSE versus the number of snapshots

N , where the SNR is fixed at 20 dB and the sources are uncorrelated.

The non-circularity phases are given by ϕ1 = 0, ϕ2 = π/2, and

ϕ3 = π/8. The empirical estimation errors of NC standard ESPRIT

and NC Unitary ESPRIT match as the sample size increases. More-

over, our analytical results already agree with the empirical ones if

N = 10 snapshots are available.

0 5 10 15 20 25 30 35
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−2

10
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10
0

SNR (dB)

R
M

S
E

 (
ra

d
)

 

 

SE emp
SE ana
UE emp
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Det CRB
NC SE emp

NC UE emp
NC SE/UE ana
Det NC CRB

Fig. 1. Analytical and empirical RMSEs versus SNR for M = 10, N = 20,

d = 3 correlated sources (ρ = 0.9) at µ1 = 0.25, µ2 = 0.5, µ3 = 0.75
with non-circularity phases ϕ1 = 0, ϕ2 = π/2, ϕ3 = π/4.

5 10 20
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−1
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R
M

S
E

 (
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d
)

 

 

SE emp
SE ana
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Det CRB
NC SE emp

NC UE emp
NC SE/UE ana
Det NC CRB

Fig. 2. Analytical and empirical RMSEs versus the snapshots N for M =

10, SNR = 20 dB, d = 3 uncorrelated sources at µ1 = 0.25, µ2 = 0.5,

µ3 = 0.75 with non-circularity phases ϕ1 = 0, ϕ2 = π/2, ϕ3 = π/8.

The simulation results show that our analytical expressions be-

come exact as the SNR or the number of snapshots becomes large.

7. CONCLUSION

In this paper, we have derived a first-order approximation of the

analytical performance of 1-D NC standard ESPRIT and 1-D NC

Unitary ESPRIT specifically designed for strictly SO non-circular

sources. Our results are based on a first-order expansion of the esti-

mation error, which is explicit in the noise perturbation and asymp-

totic in the effective SNR. We also find generic MSE expressions that

only depend on the SO statistics of the noise and merely assume the

noise to be zero-mean. Furthermore, we have proven that NC stan-

dard ESPRIT and NC Unitary ESPRIT have the same asymptotic

performance in the effective SNR and that NC Unitary ESPRIT does

not require a centro-symmetric array structure. Thus, it is preferable

due to its lower complexity and better performance at low SNRs.
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