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ABSTRACT

In prior work, we investigated the application of a spherical mi-
crophone array to a distant speech recognition task. In that work,
the relative positions of a fixed loud speaker and the spherical array
required for beamforming were measured with an optical tracking
device. In the present work, we investigate how these relative po-
sitions can be determined automatically for real, human speakers
based solely on acoustic evidence. We first derive an expression for
the complex pressure field of a plane wave scattering from a rigid
sphere. We then use this theoretical field as the predicted observa-
tion in an extended Kalman filter whose state is the speaker’s current
position, the direction of arrival of the plane wave. By minimizing
the squared-error between the predicted pressure field and that actu-
ally recorded, we are able to infer the position of the speaker.

Index Terms— Microphone arrays, speech recognition, Kalman
filters, spherical harmonics

1. INTRODUCTION

The state-of-the-art theory of beamforming with spherical micro-
phone arrays explicitly takes into account two phenomena of sound
propagation, namely, diffraction and scattering; see [1, §2] and [2,
§6.10]. While these phenomena are present in all acoustic array pro-
cessing applications, no particular attempt is typically made to incor-
porate them into conventional beamforming algorithms; rather, they
are simply assumed to contribute to the room impulse response.

In prior work [3, 4, 5], we investigated the application of a spher-
ical microphone array, the 32-channel Eigenmike R©, to a distant
speech recognition task. In that work, the relative positions of a fixed
loud speaker and the spherical array required for beamforming were
measured with an optical tracking device. In the present work, we
investigate how these relative positions can be determined automati-
cally for real human speakers based solely on acoustic evidence. For
conventional microphone arrays, speaker tracking is typically per-
formed by estimating time delays of arrival (TDOAs) between pairs
of microphones using the phase transform [6] or adaptive eigenvalue
decomposition [7]; the TDOAs can then be used as observations for
a Kalman filter whose state corresponds to the speaker’s position [8].
This approach works well for conventional arrays of modest dimen-
sions because the signals arriving at any pair of microphones are—
to a first approximation—time-shifted versions of another, which
is equivalent to a phase shift in the frequency or subband domain.
As we will discover in Section 2, such an approach is not suitable
for rigid spherical arrays inasmuch the acoustics of such arrays in-
troduce more complicated transformations of the signals arriving at
pairs of sensors [9].

Meyer and Elko [9] were among the first authors to propose
the use of spherical microphone arrays for beamforming. Initial
work in source localization with spherical arrays used beamform-
ing techniques to determine the three-dimensional power spectrum
in a room and then applied peak search techniques to locate the dom-
inant sources [9, 10]. Teutsch and Kellermann [11, 12] proposed to
use eigenbeam ESPIRIT to perform source localization with cylin-
drical and spherical arrays; their approach was extended in [13] and
more recently in [14].

In this work, we seek to develop an algorithm for speaker track-
ing as opposed to simple localization; this implies we will incorpo-
rate both past and present acoustic observations into the estimate of
the speaker’s current position as opposed to using merely the most
recent observation. This is done to obtain a robust and smooth es-
timate of the speaker’s time trajectory. To accomplish this objec-
tive, we first derive an expression for the complex pressure field of
a plane wave scattering from a rigid spherical surface [2, §6.10.3];
this expansion is an infinite series of spherical harmonics appropri-
ately weighted by the modal coefficients for scattering from a rigid
sphere. We then use this theoretical field as the predicted observa-
tion in an extended Kalman filter whose state is the speaker’s current
position, which corresponds to the direction of arrival of the plane
wave. By minimizing the squared-error between the predicted pres-
sure field and that actually recorded at the sensors of the array, we are
able to infer the position of the speaker. The Kalman filter provides
for robust position estimates in that past observations are efficiently
combined with the most recent one during the recursive correction
stage.

We applied the proposed tracking algorithm to speech data spo-
ken by real human speakers standing in front of a spherical micro-
phone array. As the true speakers’ positions are unknown, we eval-
uated the algorithm’s effectiveness by performing beamforming us-
ing the estimated positions, then automatic speech recognition on the
output of the beamformer. We found that our technique was able to
reduce the final word error rate of the system from 50.9% using a
single channel of the spherical microphone array to 45.4% using the
beamformed array output for speech recognition.

The balance of this contribution is organized as follows. Sec-
tion 2 reviews the derivation of an expression for the complex
pressure field of a plane wave impinging on a rigid sphere; the final
expression will involve an infinite series of spherical harmonics.
Section 3 presents a speaker tracking system based on an extended
Kalman filter that estimates the speaker’s position by matching the
actual, observed sound field impinging on a spherical array with
that predicted by the theory of the preceding section. Empirical
results are presented in Section 4 demonstrating the effectiveness
of the proposed algorithm; the position estimates obtained with the
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proposed algorithm are used for beamforming, and thereafter the
enhanced speech signal from the beamformer is used for automatic
recognition. In the final section, we briefly discuss the conclusions
drawn from this work and our plans for future work.

2. ANALYSIS OF A PLANE WAVE IMPINGING ON A
RIGID SPHERE

In this section, we develop a theoretical expression for the complex
pressure field of a plane wave impinging on a rigid, spherical sur-
face. We will also develop expressions for the partial derivative of
this field with respect to the direction of arrival Ω = (θ, φ), where
θ and φ denote the polar angle and azimuth, respectively. Let us ex-
press a plane wave impinging with a polar angle of θ on an array of
microphones as [2, §6.10.1]

Gpw(kr, θ, t) = ei(ωt+kr cos θ)

=

∞∑
n=0

in (2n+ 1) jn(kr)Pn(cos θ) eiωt, (1)

where jn and Pn are respectively the spherical Bessel function of the
first kind and the Legendre polynomial, both of order n, k , 2π/λ

is the wavenumber, and i ,
√
−1. Fisher and Rafaely [15] provide

a similar expansion of spherical waves, such as would be required
for near-field analysis. If the plane wave encounters a rigid sphere
with a radius of a it is scattered [2, §6.10.3] to produce a wave with
the pressure field

Gs(kr,ka, θ, t) = (2)

−
∞∑
n=0

in (2n+ 1)
j′n(ka)

h′n(ka)
hn(kr)Pn(cos θ) eiωt,

where hn = h
(1)
n denotes the Hankel function [16, §10.47] of the

first kind while the prime indicates the derivative of a function with
respect to its argument. Combining (1) and (2) yields the total sound
pressure field [2, §6.10.3]

G(kr, ka, θ) =
∞∑
n=0

in(2n+ 1) bn(ka, kr)Pn(cos θ), (3)

where the nth modal coefficient is defined as

bn(ka, kr) , jn(kr)− j′n(ka)

h′n(ka)
hn(kr). (4)

Note that the time dependence of (3) through the term eiωt has been
suppressed for convenience. Plots of |bn(ka, ka)| for n = 0, . . . , 8
are shown in Figure 1.

Let us now define the spherical harmonic of order n and degree
m as [17]

Y mn (θ, φ) ,

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pmn (cos θ) eimφ, (5)

where Pmn is the associated Legendre function of order n and de-
gree m [18, §14.3]. The spherical harmonics fulfill the same role
in the decomposition of square-integrable functions defined on the
surface of a sphere as that played by the complex exponential eiωnt

for decomposition of periodic functions defined on the real line. Let
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Fig. 1. Magnitudes of the modal coefficients bn(ka, ka) for n =
0, 1, . . . , 8, where a is the radius of the sphere and k is the wavenum-
ber.

Fig. 2. The spherical harmonics Y0, Y1, Y2 and Y3.

γ represent the angle between the points (θ, φ) and (θs, φs) lying on
a sphere, such that

cos γ = cos θs cos θ + sin θs sin θ cos(φs − φ). (6)

Then the addition theorem for spherical harmonics [19, §12.8] can
be expressed as

Pn(cos γ) =
4π

2n+ 1

n∑
m=−n

Y mn (θs, φs)Ȳ
m
n (θ, φ), (7)

where Ȳ denotes the complex conjugate of Y . Upon substituting (7)
into (3), we find

G(krs,θs, φs, ka, θ, φ) =

4π

∞∑
n=0

in bn(ka, krs)

n∑
m=−n

Y mn (θs, φs)Ȳ
m
n (θ, φ), (8)

where (θ, φ) denotes the direction of arrival of the plane wave and
(rs, θs, φs) denotes the position at which the sound field is mea-
sured. The spherical harmonics Y0 , Y 0

0 , Y1 , Y 0
1 , Y2 , Y 0

2 and
Y3 , Y 0

3 are shown in Figure 2.
In all that follows, we will assume that a = rs so that ka and

krs need not be shown as separate arguments. Based on the defini-
tion (5), we can write

∂Ȳ mn (θ, φ)

∂θ
=−

√
(2n+ 1)

4π

(n−m)!

(n+m)!

dPmn (x)

dx

∣∣∣∣
x=cos θ

· sin θ · e−imφ, (9)

∂Ȳ mn (θ, φ)

∂φ
=− im Ȳ mn (θ, φ). (10)
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It remains to evaluate dPmn (x)/dx, which can be accomplished
through the identity [18, §14.10]

(1−x2)
dPmn (x)

dx
≡ (m−n−1)Pmn+1(x)+(n+1)xPmn (x). (11)

These partial derivative expressions will be required for the lin-
earization inherent in the extended Kalman filter (EKF).

3. SPEAKER TRACKING SYSTEM

Here we use development of the preceding section to formulate a
complete tracking system based on the EKF. Let yk,l denote a vec-
tor of stacked sensor outputs for the kth time step and the lth sub-
band. Similary, let gk,l(θ, φ) denote the model of the stacked sensor
outputs

gk,l(θ, φ) ,


G(ka, θ0, φ0, ka, θ, φ)
G(ka, θ1, φ1, ka, θ, φ)

...
G(ka, θS−1, φS−1, ka, θ, φ)

 , (12)

where G(ka, θs, φs, ka, θ, φ) is given by (8). The linearization re-
quired to apply the EKF can then be expressed as

∂G

∂θ
= 4π

∞∑
n=0

inbn(ka)

n∑
m=−n

Y mn (θs, φs)
∂Ȳ mn (θ, φ)

∂θ

∂G

∂φ
= −4π

∞∑
n=0

in+1bn(ka)

n∑
m=−n

mY mn (θs, φs)Ȳ
m
n (θ, φ).

The predicted observation inherent in the covariance form of the
(extended) Kalman filter can then be formed from several compo-
nents:

1. The individual sensor outputs given in (8); these are stacked
as in (12).

2. A complex, time-varying frequency-dependent scale factor
Bk,l, which is intended to model the unknown magnitude and
phase variation of the subband components.

3. A complex exponential eiωlDk, where ωl is the center fre-
quency of the lth subband and D is the decimation factor of
the filter bank [20].

Given these definitions, the squared-error metric at time-step k
can be expressed as

ε(θ, φ, k) ,
L−1∑
l=0

∥∥∥yk,l − gk,l(θ, φ)Bk,l e
iωlDk

∥∥∥2 , (13)

where yk,l denotes the subband sensor outputs from a spherical ar-
ray. Now note that ifBk,l were known and (θ, φ) were treated as the
state of a state-space system, then this time-varying state could be
estimated with an extended Kalman filter; obviously the necessity of
using an extended Kalman filter follows from the non-linearities in θ
and φ evident in (5). It is readily shown that the maximum likelihood
estimate of Bk,l in (13) is given by

B̂k,l =
gHk,l(θ, φ)yk,l∥∥gk,l(θ, φ)

∥∥2 · e−iωlDk. (14)

Note that if B̂k,l in (14) is substituted into (13), the term eiωlDk will
cancel out of the latter. Hence, these exponential terms can just as
well be omitted from both (13) and (14).

Given the simplicity of (14), we might plausibly modify the stan-
dard extended Kalman filter as such:

1. Estimate the scale factors Bk,l as in (14).

2. Use this estimate to update the state estimates (θ̂k, φ̂k) of the
Kalman filter.

3. (Possibly) perform an iterative update for each time step as
in the iterated extended Kalman filter (IEKF) [21, §4.3.3] by
repeating Steps 1 and 2.

We now briefly summarize the operation of the EKF. Let us state
the state and observation equations, respectively, as

xk = xk−1 + uk−1, (15)
yk = Hk(xk) + vk, (16)

where Hk is the known, nonlinear observation functional. The noise
terms uk and vk in (15–16) are by assumption zero mean, white
Gaussian random vector processes with covariance matrices

Uk = E{ukuHk }, Vk = E{vkvHk },

respectively. Moreover, by assumption uk and vk are statistically
independent. Let y1:k−1 denote all past observations up to time k−
1, and let ŷk|k−1 denote the minimum mean square error estimate
of the next observation yk given all prior observations, such that,

ŷk|k−1 = E{yk|y1:k−1}.

By definition, the innovation is the difference sk , yk − ŷk|k−1

between the actual and the predicted observations. This quantity
is given the name innovation, because it contains all the “new in-
formation” required for sequentially updating the filtering density
p(x0:k|y1:k−1) [21, §4]; i.e., the innovation contains that informa-
tion about the time evolution of the system that cannot be predicted
from the state space model.

We will now present the principal quantities and relations in
the operation of the EKF; the details can be found in Haykin [22,
§10], for example. Let us begin by stating how the predicted ob-
servation may be calculated based on the current state estimate, ac-
cording to ŷk|k−1 = Hk(x̂k|k−1). Hence, we may write sk =

yk −Hk(x̂k|k−1), which implies

sk = H̄k(x̂k|k−1)εk|k−1 + vk, (17)

where εk|k−1 = xk − x̂k|k−1 is the predicted state estimation error
at time k, using all data up to time k − 1, and H̄k(x̂k|k−1) is the
linearization of Hk(x) about x = xk|k−1. It can be readily shown
that εk|k−1 is orthogonal to uk and vk [22, §10.1]. Using (17) and
exploiting the statistical independence of uk and vk, the covariance
matrix of the innovations sequence can be expressed as

Sk , E
{
sks

H
k

}
= H̄k(x̂k|k−1)Kk|k−1H̄k(x̂k|k−1)+Vk, (18)

where the predicted state estimation error covariance matrix is de-
fined as

Kk|k−1 , E
{
εk|k−1ε

H
k|k−1

}
. (19)

The Kalman gain Gk can be calculated as

Gk = Kk|k−1H̄
H
k (xk|k−1)S−1

k , (20)

where the covariance matrix Sk of the innovations sequence is de-
fined in (18). The Riccati equation then specifies how Kk|k−1 can
be sequentially updated, namely as,

Kk|k−1 = Fk|k−1 Kk−1 F
H
k|k−1 + Uk−1. (21)
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Fig. 3. Sensor configuration for data capture with the Eigenmike.

The matrix Kk in (21) is, in turn, obtained through the recursion,

Kk = Kk|k−1 −GkHkKk|k−1 = (I−GkHk)Kk|k−1. (22)

This matrix Kk can be interpreted as the covariance matrix of the
filtered state estimation error [22, §10], such that,

Kk ,
{
εkε

H
k

}
,

where εk , xk − x̂k|k. Finally, filtered state estimate is given by

x̂k|k = x̂k|k−1 + Gksk. (23)

4. EXPERIMENTAL RESULTS

Figure 3 shows the sensor configuration used for our data capture. In
the recording sessions, eleven human subjects are asked to read 25
sentences from the Wall Street Journal corpus at each of two dif-
ferent positions in order to investigate the sensitivity of recognition
performance to the distance between speaker and array; as shown in
the figure, the positions where the speaker was to stand were marked
on the floor at 1 m, 2 m, and 4 m from the array measured parallel to
the floor. The test data consisted of 6,948 words in total. The rever-
beration time T60 of the room was approximately 550ms. No noise
was artificially added to the captured data, as natural noise from air
conditioners, computers and other speakers was already present. The
data was sampled at a rate of 44.1 kHz with a depth of three bytes
per sample. Subband analysis was performed with the filter bank
described in [21, §11] with M = 512 subbands.

The inter-sensor noise covariance matrix Vk for each subband
required in (18) was estimated by analyzing segments of each ses-
sion wherein the speaker was inactive with the filter bank [21, §11],
summing the outer product of the subband snapshots, then scaling
by the total number of frames analyzed. After the speakers positions
were obtained with the speaker tracking system [8], beamforming
was performed. We then ran the multi-pass speech recognizer de-
scribed in [3] on the enhanced speech data. Table 1 shows word
error rates (WERs) obtained with each beamforming algorithm as a
function of distance between the speaker and the Eigenmike. As a
reference, the word error rates obtained with the single array channel
(SAC) and close-talking microphone (CTM) are also shown.

Pass (%WER)
Algorithm Distance 1 2 3 4

SDM 1 m 75.6 43.6 31.6 28.8
2 m 84.7 61.5 44.5 39.2
4 m 89.4 72.5 57.1 50.9

SH SD BF 1 m 77.9 46.8 37.2 32.3
2 m 83.2 58.2 43.3 39.0
4 m 87.0 64.0 48.8 44.0

FF SD BF 1 m 79.7 50.9 38.3 35.6
2 m 84.0 60.0 45.2 40.9
4 m 85.5 67.4 49.8 45.4

CTM Avg. 31.7 20.9 16.4 15.6

Table 1. WERs as a function of distances between the speakers and
the Eigenmike.

Results are given in Table 1 for two variants of the super-
directive beamformer. In the first, beamforming is performed in the
spherical harmonics domain using the inter-harmonic covariance
matrix derived by Yan et al. [23] for diffuse noise (SH SD BF).
In the second variant, beamforming was performed directly on the
sensor outputs without first performing modal analysis; moreover,
the rigid spherical baffle was ignored inasmuch as the microphones
were assumed to reside in a free field (FF SD BF). We found that
spherical harmonics super-directive beamforming (SH SD BF) is
more effective in terms of speech recognition performance.

The results reported in the table indicate that beamforming was
ineffective at 1 m and 2 m, but provided a significant reduction in
WER at 4 m. We attribute this to the far-field assumption used in
derivinig (3); this assumption is largely valid for the distance of 4 m,
but does not hold at the smaller distances. In future, we plan to inves-
tigate the near-field pressure field derived by Fisher and Rafaely [15]
for speaker tracking and beamforming.

In the large vocabulary continuous speech recognition task, the
distant speech recognizer with beamforming still lags behind the
close talking microphone. However, the recognition performance
can still be acceptable in applications that do not require recogniz-
ing every word precisely, such as dialogue systems.

5. CONCLUSIONS

Our results demonstrated that the combination of speaker tracking
and beamforming enhanced the signal sufficiently to produce a sig-
nificant reduction in the error rate of a distant speech recognition
system when the speaker was located 4 m from the spherical array.
For distances of 1 m and 2 m, however, a degradation in system
performance was observed after tracking and beamforming. We at-
tribute these contradictory results to the plane wave assumption we
used in formulating our algorithm; such an assumption is valid for
the greater distance, but not for the smaller. In future work, we will
investigate the use of a near-field assumption for tracking and beam-
forming as in [15]. We also plan to compare our proposed method to
other algorithms extant in the literature [10, 14, 24].
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