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ABSTRACT

In certain direction-of-arrival (DOA) estimation scenarios

some of the source directions are known to the operator even

before measurements are acquired. It is then undesirable

to use regular DOA-algorithms which waste data-samples

estimating the known directions. Additionally, in some appli-

cations it is known that the signals emanating from the known

directions are uncorrelated with those coming from the un-

known directions. In this article we present a novel algorithm

which exploits the combination of such prior knowledge in a

manner more efficient (in terms of accuracy) than any algo-

rithm known to the authors. Through numerical Monte-Carlo

simulations we show the estimator to attain the theoretical

accuracy bound for significantly lower signal-to-noise ratios

than current state-of-the-art methods. Additionally we show

the proposed algorithm to treat the stricter problem of entirely

uncorrelated emitters better than current state of the art.

Index Terms— Accuracy, Arrays, Covariance matrix, Di-

rection of arrival estimation, Signal processing algorithms

1. INTRODUCTION

In certain direction-of-arrival (DOA) estimation scenarios

some of the source direction are known to the operator even

before measurements are acquired. Hence there is no need to

estimate such directions. Actually, in many cases the pres-

ence of such known emitters has an adverse effect on the

estimation of the unknown sources [1]. Thus there is a need

to remove or at least mitigate this negative effect.

This problem has recently acquired some interest; in [2]

it was shown how to exploit the benefits of such prior infor-

mation by modifying the sample covariance matrix of the re-

ceived data when the number of available data samples were
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low. A different approach is taken in [1], where asymptoti-

cally efficient (in the number of samples) methods are inves-

tigated. It was shown that very large performance gains were

possible when coupling the prior bearing knowledge with the

information that the sources are uncorrelated.

In this article we investigate the case when some direc-

tions are known, and it is additionally known that the signals

from the emitters corresponding to the known directions are

uncorrelated with the signals from the unknown sources. This

assumption was implemented in a Root-MUSIC-type algo-

rithm in [1], but it was seen that the thus defined estimator

had highly undesirable properties in some scenarios. In this

work we exploit the same assumption, but in a more struc-

tured way, and we derive a weighted-subspace type [3] al-

gorithm POWDER (Prior-exploiting Orthogonally Weighted

Direction EstimatoR), which treats the resulting problem in a

statistically optimal manner.

We use the notation that T denotes transpose, c conjugate,

and ∗ conjugate-transpose. Uppercase and lowercase boldface

letters denote matrices and vectors, respectively. A single in-

dex on a matrix denotes the indexed column.

2. PROBLEM DESCRIPTION

Consider the narrow-band signal model (see, e.g. [3])

y(t) = A(θ̄)x(t) + n(t), t = 0, . . . , N − 1. (1)

The vector y(t) ∈ Cm×1 represents the sensor array out-

put from a uniform linear array (ULA) with half-wavelength

intra-sensor separation, and x(t) ∈ Cd×1 represents the sig-

nal samples. The matrix A(θ̄) ∈ Cm×d is the array steering

matrix, whose ith column is given by

a(θ̄i) =
[
1 e−jπ sin(θ̄i) · · · e−j(m−1)π sin(θ̄i)

]T
, (2)

which is uniquely determined by the array geometry and the

DOAs θ̄ of the impinging signals (we reserve θ for the un-

known DOAs, see below). The dimension m corresponds to

the number of sensors and d is the number of source signals.
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Finally, n(t) ∈ Cm×1 represents the sensor noise. We model

both the signal and the noise vectors as zero mean, i.i.d. cir-

cularly symmetric complex Gaussian random processes with

spatial covariance matrices given by cov(x(t)) = P and

cov(n(t)) = σ2I, respectively.

In this article we exploit two additional properties of the

received data: first, we assume that some of the signal di-

rections are known a-priori; hence we are only interested in

estimating du = d− dk of the DOAs, where the subscripts u

and k henceforth denotes unknown and known. With that fact

in mind we can, without loss of generality, write

θ̄ =
[
θ
T

ϑ
T
]T

; (3)

A(θ̄) =
[
A(θ) A(ϑ)

] △
=

[
Au Ak

]
; (4)

P =

[
Pu Puk

P∗

uk Pk

]
(5)

where θ and ϑ denote the DOA parameters of the unknown

and known sources, respectively. The second property we ex-

ploit is that we assume that there is no correlation between

the signals from the known and unknown directions: hence,

in (5),

Puk = 0. (6)

We do not make any assumptions on Pk or Pu.

3. PROPOSED ESTIMATOR: POWDER

Denote the covariance matrix of the sensor output by R =
E[y(t)y∗(t)]. Using the notation from Section 2 we can write

R−σ2I = APA∗ =
[
Au Ak

] [Pu Puk

P∗

uk Pk

] [
A∗

u

A∗

k

]
. (7)

Let Π⊥

Ak
= I−Ak (A

∗

kAk)
−1

A∗

k. Then A∗

kΠ
⊥

Ak
= 0, and

[4], [1]

(
R− σ2I

)
Π⊥

Ak
= AuPuA

∗

uΠ
⊥

Ak
+AkP

∗

ukA
∗

uΠ
⊥

Ak

= AuPuA
∗

uΠ
⊥

Ak
= UsΣsV

∗

s , (8)

where the second equality above is due to (6), and the third

follows from a singular value decomposition where we have

retained the terms corresponding to the d′u (rank(Pu) = d′u)

principal singular values (the remaining m− d′u singular val-

ues are all zero). The subscript s denotes signal.

Since we do not have access to the true covariance matrix

R, we instead base our estimation on the sample covariance

matrix

R̂ =
1

N

N∑

t=1

y(t)y∗(t). (9)

In order to estimate σ2, we perform an eigendecomposition

of (9) according to

R̂ = ÊsΛ̂sÊ
∗

s + ÊnΛ̂nÊ
∗

n, (10)

where Ês is constructed from the eigenvectors associated

with the d′ = d′u + rank(Pk) largest eigenvalues of R̂, and

Λ̂s contains said eigenvalues; Ên spans the noise subspace,

where the associated eigenvalues are Λ̂n. Thus we can esti-

mate σ̂2 = 1
m−d′

Tr(Λ̂n). Using this estimate and the sample

data (9) in (8) and then performing the SVD we get

(
R̂− σ̂2I

)
Π⊥

Ak
= ÛsΣ̂sV̂

∗

s + ÛnΣ̂nV̂
∗

n. (11)

The terms subscripted by n are due to noise and finite sam-

ple effects (which can be expected to be prevalent, since the

sample counterpart of (6), P̂uk , 6= 0). From (11), and the

orthogonality between V̂s and V̂∗
n,

Ûs =
(
R̂− σ̂2I

)
Π⊥

Ak
V̂sΣ̂

−1

s . (12)

By introducing the matrix B, which spans the nullspace of

A∗
u (i.e. B∗Au = 0), we can see that

B∗Ûs = B∗

(
R̂− σ̂2I

)
Π⊥

Ak
V̂sΣ̂

−1

s

≃ B∗

(
R̃− σ̃2I

)
Π⊥

Ak
VsΣ

−1
s , (13)

since B∗Us = 0. In (13)≃ denotes that only first-order error

terms are retained and, for a given variable, ã = â−a denotes

the error in the estimate of that variable using the available

data samples. From (2) and [5], we define B ∈ Cm×m−du

B(θ) =



b0 b1 . . . bdu

0

. . .
. . .

. . .

0 b0 b1 . . . bdu




T

, (14)

where the coefficients bi are defined by the polynomial

b0

du∏

i=1

(z−e−jπ sin(θi))
△
= b0z

du +b1z
du−1+ . . .+bdu

. (15)

Since the true DOAs θ uniquely parameterizeB through (15),

minimizing (13) with respect to B gives an estimate of θ. To

perform this minimization in a theoretically sound manner,

form the residual vector ǫ = vec
(
Û∗

sB
)

, and solve

θ̂ = argmin
θ

ǫ
∗Wǫ, (16)

where W is a weighting matrix. In order to explicitly

minimize (16) we collect the coefficients of (15) in b =
[b0 b1 · · · bdu

]T and then rewrite the residual as

ǫ = vec
(
Û∗

sB
)
=

(
Im−d ⊗ Û∗

s

)
vec(B)

△
= Kb, (17)

where K =
(
Im−d ⊗ Û∗

s

)
Ψ in which the selection matrix

Ψ is given from vec(B) = Ψb. We also use the identity

vec(ABC) = (CT ⊗A) vec(B) for any matrices A, B, C

3973



of compatible dimensions. With (17) we can rewrite the cost

function in (16) according to

V (θ) = ǫ
∗Wǫ = b∗K∗WKb; (18)

the minimization of V (θ) with respect to θ can then be solved

as an eigenvalue problem for b. For some technical details re-

garding this minimization, please see [6]. One benefit of pa-

rameterizing (18) by b is that the initialization of the weight-

ing matrix W then is very straightforward, as shown below in

Algorithm 1.

Choosing the weighting matrix

W = E [ǫǫ∗]
−1

(19)

is well known to (see e.g. [7]) yield minimum variance esti-

mates of θ in (18). In order to find a closed form expression

for (19), we rewrite (17) based on (13):

ǫ = vec
(
Û∗

sB
)

=
(
BT ⊗Σ−1

s V∗

sΠ
⊥

Ak

)
vec

(
R̃− σ̃2I

)
△
= Mf̃ , (20)

with M and f̃ naturally defined from (20). Based on an anal-

ysis similar to the one in [8], it can be shown that σ̃2 =
1

(m−d′) vec
∗(Im − EsE

∗
s) vec(R̃), which used in (20) gives

f̃ = vec(R̃)−
1

m− d′
vec(Im) vec∗(Im −EsE

∗

s) vec(R̃).

We can then write

H = M

(
Im2 −

1

m− d′
vec(Im) vec∗(Im −EsE

∗

s)

)

and thus ǫ = H vec(R̃). Together with the well known result

(from e.g. [7]) cov(vec(R̃)) = N−1
(
RT ⊗R

)
we find

E [ǫǫ∗] =
1

N
H

(
RT ⊗R

)
H∗, (21)

which can be shown to be full rank. In practice the factors

of (21) are based on estimates from sample-data (and B has

to be initialized); however, as long as such estimates are con-

sistent estimates of the true quantities, it can be shown that

we can use Ŵ without impairing the asymptotic properties of

the estimator. We summarize the proposed method in Algo-

rithm 1.

Remark: Note that (16) is valid for any array geome-

try; the ULA implementation is however attractive since it

avoids the complex multi-dimensional optimization problem

typically appearing for arbitrary array geometries.

4. NUMERICAL EXAMPLES

We confirm the efficacy of the POWDER-algorithm by nu-

merical Monte-Carlo (MC) simulations: we generate synthet-

ical array data according to the data-model (1); the source sig-

nal x(t) and the noise n(t) are generated as realizations of a

Algorithm 1 POWDER

1: Input: R̂, d, d′u, d′, ϑ; tol; itermax

2: Find (from {Input}): m; du; Ψ; Π⊥

Ak
; Λ̂n; Ês

3: Estimate: σ̂2 = (m− d′)−1 Tr(Λ̂n)

4: Find: Ûs, Σ̂s, V̂∗
s from the SVD of (R̂− σ̂2I)Π⊥

Ak

5: Initialize: B from bT =
[
1 0 . . . 0

]
; K; iter = 0

6: repeat

7: Find: Ŵiter

8: Find: θ̂
iter+1

by minimizing (18)

9: Find: Biter+1 from θ̂
iter+1

; update M̂iter+1

10: iter← iter + 1

11: until
(
|θ̂

iter
− θ̂

iter−1
| < tol

)
OR (iter > itermax)

12: Output: θ̂
iter

pseudo-random process with covariance matrices P and σ2I,

respectively. Our performance metric is the root-mean-square

error

RMSEi =

√√√√ 1

L

L∑

k=1

(
θ̂i,k − θi

)2

, i = 1, . . . , du, (22)

where L is the number of MC-realizations.

We study the case when ϑ =
[
12◦ 20◦

]T
and θ =[

10◦ 15◦
]T

; to start with we let the respective signals be

coherent since this is typically a difficult scenario in which

many (e.g., MUSIC-type [1], [9]) estimators fail. Thus,

Pu = Pk =

[
1 1
1 1

]
, (23)

σ2 = SNR−1 and Puk = 0. We also let m = 10, and

N = 100 samples are generated to create R̂. In Fig. 1 we

vary the SNR, and compare POWDER to PLEDGE [4], which

is optimal for the case when some of the signal bearings are

known (but when no assumptions on the signal covariance

matrix can be made). We also show CRBP [1] (which is

the theoretical performance bound when some signal bear-

ings are known, attainable by PLEDGE) and CRBBD (which

is the bound exploiting the block-diagonal structure of P in

conjunction with the knowledge of some signal bearings; this

bound will be explicitly derived in the journal version of this

article). For comparison, we also show the bound CRBθ for

which the known sources are absent.

We can see that the additional information Puk = 0 has a

very large impact on the estimation accuracy; POWDER gives

the same accuracy as PLEDGE for an SNR that is 25dB lower.

For a given SNR, POWDER gives an error that is roughly 10
times smaller than PLEDGE. We can also see that POWDER

attains the theoretical accuracy bound at a lower SNR than the

other method. It is also interesting to note that CRBBD is not

very far from CRBθ ; this means that the detrimental effects

of the known sources have been mitigated to a large extent.
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Fig. 1. Block-diagonal P, with Pk and Pu both coherent.

Two sources assumed known, ϑ = [12◦ 20◦]T, with θ =
[10◦ 15◦]T. Showing RMSE of θ1. Averages based on 1000

MC realizations.

Next we study the case when the sources are known to

be uncorrelated; we thus let P = I and keep the remain-

ing parameters as before, except that we increase the num-

ber of samples to N = 1000. In [1] it was shown that in

a similar scenario a method denoted PLEDGE UC, which

exploits the diagonal structure of P along the lines of [10],

achieved large accuracy gains as compared to PLEDGE. As

can be seen in Fig. 2, POWDER is asymptotically as accu-

rate as PLEDGE UC, but attains the (joint) bound at a lower

SNR. It is somewhat surprising that POWDER improves on

PLEDGE UC in this scenario; the former is not exploiting as

much structure in the problem as the latter is, but apparently

POWDER is using its reduced information more efficiently.

By comparing the (close to identical) CRBs of Fig. 2, it can

be realized that the reduced parameter set (resulting from the

assumption of uncorrelated sources) does not, in the studied

scenario, translate to a significantly easier estimation problem

as compared to the assumption of block-diagonal signal co-

variance. This explains the good performance of POWDER.

It can also be noted that the distance to CRBθ is larger in this

scenario than in the one depicted in Fig. 1.

5. CONCLUSIONS

In this work we have derived a novel algorithm for the DOA

scenario when there is prior knowledge on some directions

and when it is known that the signals from the known and

the unknown directions are uncorrelated. We showed through

numerical simulations that the estimator, denoted POWDER,

is very potent in diverse scenarios; both in the cases of co-
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Fig. 2. Examining diagonal P; N = 1000; other parameters

identical to the scenario in Fig. 1.

herent and uncorrelated sources, POWDER is more accurate

than any method known to the authors.

The advantages however come at a cost; the cyclic part of

the algorithm, i.e. steps 6 through 11 in Algorithm 1, needs

to run through more iterations than the corresponding steps

of, e.g., PLEDGE or PLEDGE UC. Additionally, POWDER

is not SNR-efficient in the sense that for a given N , there is

a lower bound on the RMSE of the method, independent of

SNR. A more thorough comparison of accuracy limitations,

computational costs, and the detailed minimization operation

is deferred to the journal version of this paper.

6. RELATION TO PRIOR WORK

The POWDER-method presented in this article is related to

the algorithms presented in [1], [2], [9] and [11] in the sense

that it exploits prior information on some source DOA. It in-

corporates the prior DOA-information through an orthogonal

projection in a manner similar to the methods of [9] and [11]

(as opposed to the methods in [1] and [2] which utilize other

techniques for incorporating such knowledge). One of the

methods in [1] additionally exploits information on the source

correlation and the proposed method does this as well. POW-

DER however relaxes the assumption of the method in [1]

that all sources in the scene are uncorrelated to only requiring

the signals from the known directions to be uncorrelated with

those from the unknown directions. It is interesting to note

that even in the case (as seen in Fig. 2) when all the sources

were uncorrelated, and the more restrictive assumption ex-

ploited by the method in [1] thus was satisfied, POWDER

gave better performance than any previously known method.
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