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ABSTRACT

In this paper, we propose co-prime arrays for effective
direction-of-arrival (DOA) estimation. To fully utilize the vir-
tual aperture achieved in the difference co-array constructed
from a co-prime array structure, sparsity-based spatial spec-
trum estimation technique is exploited. Compared to existing
techniques, the proposed technique achieves better utiliza-
tion of the co-array aperture and thus results in increased
degrees-of-freedom as well as improved DOA estimation
performance.

Index Terms— Co-prime array, sparse array, difference
co-array, direction finding, compressive sensing

1. INTRODUCTION

Sparse arrays achieve higher degrees-of-freedom (DOFs) by
reducing the number of redundant sensors under the co-array
equivalence [1]. A minimum redundancy array (MRA) is a
well-known example of sparse linear array structures which,
for a given number of elements, maximizes the number of
consecutive virtual elements in the resulting difference co-
array [2]. Minimum hole arrays (also known as the Golomb
arrays) minimize the number of holes in the difference co-
array [3]. Nested arrays [4], which are obtained by combin-
ing two or more uniform linear arrays (ULAs) with ascend-
ing inter-element spacing, is another exciting approach for
increasing array DOFs.

Recently, the co-prime array has been proposed as an at-
tractive technique for sparse arrays construction [5]. A co-
prime array utilizes a co-prime pair of uniform linear sub-
arrays, where one is of M sensors with an inter-element spac-
ing of N units, whereas the other is of N elements with an
inter-element spacing of M units. The numbers M and N
are chosen to be co-prime. The unit inter-element spacing, d,
is typically set as half wavelength, or λ/2. Because the two
sub-arrays share the first sensor at the zeroth position, the cor-
responding co-prime array has a total number of M +N − 1
sensors and achieves O(MN) DOFs, which is much larger
than the number of physical array elements, M + N − 1.
The increased DOFs can be exploited in direction-of-arrival
(DOA) estimation and beamforming problems for improved
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performance and to handle more signals than the number of
physical sensors [5, 6].

In [6], a new technique is proposed to use co-prime arrays
for DOA estimation of uncorrelated sources. This technique
recognizes that, by vectorizing the co-prime array covariance
matrix, a new formulation involving the steering vectors of a
virtual array with an extended aperture can be achieved. The
drawback of this formulation, however, is that the second-
order statistics, in particular the source power, now replaces
the data sequence. Since source power assumes constant val-
ues, the problem becomes DOA estimation of coherent sig-
nals or a single snapshot. In this case, subspace-based DOA
estimation techniques, such as the commonly used MUSIC al-
gorithm, fail to estimate multiple sources unless source decor-
relation is performed. The spatial smoothing technique is ap-
plied in [6] to perform signal decorrelation and restore the full
rank of the resulting data covariance matrix. The application
of spatial smoothing, however, implies significant reduction
of the obtained virtual array aperture. As such, the DOFs as
well as the performance are compromised.

It is well known that the maximum likelihood (ML) algo-
rithm can resolve the DOAs of multiple sources even when
they are coherent. In the presence of multiple sources, how-
ever, ML requires a multi-dimensional search and thus is con-
sidered impractical due to its prohibitively high complexity.
Nevertheless, the recent advances in compressive sensing en-
able an efficient solution of such ML problems by utilizing the
sparsity property of the sources in the spatial domain. DOA
estimation can be implemented using a number of techniques
[7, 8], such as the least absolute shrinkage and selection oper-
ator (Lasso), orthogonal matching pursuit (OMP), and com-
pressive sampling matched pursuit (CoSaMP) [9, 10, 11]. The
use of sparse support recovery techniques for DOA estimation
using nested arrays was considered in [12, 13]. On the other
hand, a parameter-free algorithm, referred to as the iterative
adaptive approach (IAA), was proposed recently in [14] and
extended in [15, 16, 17]. These techniques are insensitive to
practical impairments such as the availability of a few (even
single) snapshots and coherent sources.

In this paper, we propose the use of sparse signal recov-
ery methods in the co-prime arrays for effective DOA esti-
mations. As it becomes clear from the above discussion, ap-
plying these methods to co-prime array allows us to estimate
DOA information from the single snapshot or coherent data
samples of the difference co-arrays. In doing so, there is no
need to perform spatial smoothing and, as such, the entire vir-
tual array aperture can be fully utilized. The Lasso algorithm
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is considered in this paper for sparse signal recovery, but other
methods may also be applied. Different co-prime array struc-
tures are compared for DOA estimations.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes
the N ×N identity matrix. (.)T and (.)H respectively denote
the transpose and conjugate transpose of a matrix or vector.
vec(·) denotes the vectorization operator that turns a matrix
into a vector by stacking all columns on top of the another,
and diag(x) denotes a diagonal matrix that uses the elements
of x as its diagonal elements. ∥ ·∥2 denotes the Euclidean (l2)
norm of a vector, whereas || · ||0 and || · ||1 respectively denote
the l0 and l1 norms. E(·) denotes the statistical expectation
operator.

⊗
denotes the Kronecker product, and real(·) and

imag(·) represent the real and imaginary part operations.

2. SYSTEM MODEL

A co-prime array, as illustrated in Fig. 1, consists of a co-
prime pair of uniform linear sub-arrays, where one sub-array
uses M sensors with an inter-element spacing of N units,
whereas the other uses N elements with an inter-element
spacing of M units [5]. M and N are chosen to be co-prime
and, without loss of generality, we assume M < N . The unit
inter-element spacing, d, is usually set as half wavelength, or
λ/2.

The resulting N +M − 1 elements are positioned at

S = {Mnd, 0 ≤ n ≤ N − 1} ∪ {Nmd, 0 ≤ m ≤ M − 1}.
(1)

Because the two sub-arrays share the first sensor at the zeroth
position, the total number of sensors in the co-prime array is
M +N − 1.

Denote p = [p1, ..., pM+N−1]
T as the positions of the

array sensors where pi ∈ S, ∀i, where the first sensor
is assumed as the reference, i.e., p1 = 0. Assume that
D uncorrelated signals imping on the array from angles
Θ = [θ1, ..., θD]T , and their discritized baseband waveforms
are expressed as sd(t), t = 1, ..., T , for d = 1, ..., D. Then,
the data vector received at the co-prime array is expressed as

x(t) =

D∑
d=1

a(θd)sd(t) + n(t) = As(t) + n(t), (2)

where

a(θd) =
[
1, ej

2πp2
λ sin(θd), ..., ej

2πpM+N−1
λ sin(θd)

]T
(3)

is the steering vector of the array corresponding to θd, A =
[a(θ1), ...,a(θD)], and s(t) = [s1(t), ..., sD(t)]T . The ele-
ments of the noise vector n(t) are assumed to be independent
and identically distributed (i.i.d.) random variables following
the complex Gaussian distribution NC(0, σ2

n), i.e., of zero
mean and variance σ2

n.
The covariance matrix of data vector x(t) is obtained as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nIM+N−1

=
D∑

d=1

σ2
da(θd)a

H(θd) + σ2
nIM+N−1,

(4)

Fig. 1. Co-prime array configuration.

where Rss = E[s(t)sH(t)] = diag([σ2
1 , ..., σ

2
D]) is the source

covariance matrix, where σ2
d denotes the input signal power

of the dth source, d = 1, ..., D. In practice, the covariance
matrix is replaced by the following sample average:

R̂xx =
1

T

T∑
t=1

x(t)xH(t). (5)

3. CO-PRIME MUSIC ALGORITHM

In this section, we summarize the concept of co-prime MU-
SIC algorithm proposed in [6]. The entries of the covari-
ance matrix Rxx correspond to different lags. From anten-
nas located at the mth and nth positions in p, the correlation
E[xm(t)x∗

n(t)] yields an entry in Rxx with lag pm − pn. As
such, all the available values of m and n, where 0 ≤ n ≤
N − 1 and 0 ≤ m ≤ M − 1, yields virtual sensors of the
following difference co-array:

CS = {z|z = u− v,u ∈ S,v ∈ S}. (6)

Vectorizing Rxx yields

z = vec(Rxx) = Ãb+ σ2
ñi, (7)

where Ã = [ã(θ1), ..., ã(θD)], ã(θd) = a∗(θd)
⊗

a(θd),
b = [σ1, ..., σD]T , and ĩ = vec(IM+N−1). Assume that
the noise variance can be estimated and the effect of σ2

ñi can
be compensated for in the above expression. Then, the vec-
tor z amounts to the received data from a virtual array with
a much longer array aperture whose corresponding steering
matrix is defined by Ã. However, the virtual source signal
becomes a single snapshot of b. Therefore, the rank of the
noise-free covariance matrix of z, Rzz = zzH , is one, and
subspace-based DOA estimation techniques, such as MUSIC,
fail to yield DOA estimates when multiple signals imping to
the array. Notice that the use of multiple segments of data
may yield multiple samples of b, but in so doing the rank of
Rzz is not increased because these data samples are coherent
as b is constant.

To overcome this problem, as shown in Fig. 2, it is pro-
posed in [6] to double the number of array sensor in the first
sub-array, which has fewer sensors than the other sub-array.
To distinguish the notation from the original co-prime array
structure, we denote the number of sensors in the two sub-
arrays as N ′ and 2M ′. Because the zeroth sensor positions of
the two arrays are collocated, the total number of the physi-
cal sensors in this co-prime array structure is N ′ + 2M ′ − 1.
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Fig. 2. Alternative co-prime array configuration for DOA es-
timation.

As such, the lag difference generated by this co-prime array
includes all the 2M ′N ′ + 1 lag difference from −M ′N ′ to
M ′N ′. By extracting these 2M ′N ′ + 1 lags that correspond
to a ULA with antenna positions at nd, where −M ′N ′ ≤
n ≤ M ′N ′, we can construct a (2M ′N ′+1)× (2M ′N ′+1)
covariance matrix, denoted as R′

zz. From the M ′N ′ + 1 di-
agonal sub-matrices, each of size (M ′N ′+1)× (M ′N ′+1),
we can perform spatial smoothing to obtain an (M ′N ′+1)×
(M ′N ′+1) covariance matrix, which has a rank of M ′N ′+1.
As such, the co-prime MUSIC algorithm achieves a DOF of
M ′N ′ from 2M ′ + N ′ − 1 physical sensors. We observe,
however, that the available DOFs are ineffectively used be-
cause of the exploitation of spatial smoothing. As a matter
of fact, the usable DOFs are only approximately half of the
continuous lags.

4. PROPOSED APPROACH

We consider solving (7) in terms of the sparse signal recov-
ery through compressive sensing. The desired result of b is
represented as the solution to the following constrained mini-
mization problem

b̂ = argmin
b

||b||0 s.t. ||z− Ãb− σ2
ñi||2 < ϵ, (8)

where ϵ is a user-specific bound. For notational compactness,
we define B = [Ã, ĩ] and r = [bT , σ2

n]
T = [σ2

1 , ..., σ
2
D, σ2

n].
Then, the above expression can be reformulated as

r̂ = argmin
r

||r||0 s.t. ||z−Br||2 < ϵ. (9)

This type of problems has been the objective of intensive stud-
ies in the area of compressive sensing. A number of effective
numerical computation methods have been developed. In this
paper, we use the batch Lasso method, but other methods may
also be used. Lasso is one of the most important techniques
for sparse signal recovery which uses the l1-norm to enforce
sparsity, i.e., the l0 norm in the above expression is replaced
by the l1 norm. By defining matrix the Bg as the collection of
steering vectors over a finite grid θg1 , ..., θ

g
K , where K ≫ D,

the Lasso objective function is defined as

r̂g = argmin
rg

[
1

2
||z−Bgrg||2 + λt||rg||1

]
, (10)

where the l2 norm in the objective function denotes the ordi-
nary least-squares (OLS) cost function, and the l1 norm in-
volves the sparsity constraint. In addition, λt is a penalty pa-
rameter which can be tuned to trade off the OLS error for

the number of nonzero entries (degree of sparsity) in the esti-
mates [9]. The above Lasso objective is convex in rg, and can
be optimized using linear programming techniques [18]. The
last entry of rg denotes the estimate of σ2

n, whereas the posi-
tions and values of the non-zero entries in the other elements
of rg represent the DOA estimates and the respective signal
power.

The Lasso algorithm is developed to solve real-value
problems, whereas Bg and z in (10) are generally com-
plex. To modify the problem (10) to a real-valued prob-
lem, we notice that rg is real-valued, and denote B̃g =
[real(Bg)T , imag(Bg)T ]T and z̃ = [real(z)T , imag(z)T ]T .
Then, the above expression is equivalently described as

r̂g = argmin
rg

[
1

2
||z̃− B̃grg||2 + λt||rg||1

]
. (11)

We make the following two remarks:

1. Two co-prime array structures are shown in Figs. 1 and
2. Given the same number of the total physical sensors
(i.e., M+N−1 = 2M ′+N ′−1, the second array ge-
ometry tends to achieve a larger number of consecutive
virtual sensors and thus generally yields a better DOA
estimation performance.

2. The Lasso-based spectrum estimation technique may
induce spurious peaks by undesirable estimates of r,
especially in low signal-to-noise ratio (SNR) situations.
When the number of sources is smaller than the num-
ber of physical array sensors, the number of sources
can be estimated according to the Akaike information
criterion (AIC) or minimum description length (MDL)
criterion [19]. In this case, the DOA estimates can be
empirically obtained by selecting D dominant peaks of
the spatial spectrum. When the number of sources is
larger than the number of physical array sensors, how-
ever, then the number of sources cannot be estimated in
this manner.

5. SIMULATION RESULTS

We consider co-prime arrays consisting of 10 physical an-
tenna sensors. For the first co-prime array geometry, we have
N = 6 and M = 5, The sensor positions of the two sub-
arrays are respectively [0, 6, 12, 18, 24]d and [0, 5, 10, 15,
20, 25]d, where the zeroth position is shared by both sub-
arrays, and the unit inter-element spacing d is chosen to be
half wavelength. On the other hand, the second co-prime ar-
ray geometry can be designed by taking N ′ = 5, and M ′ = 3,
where the sensor are respectively located at [0, 3, 6, 9, 12]d
and [0, 5, 10, 15, 20, 25]d. Both arrays have a maximum
virtual array lag of 25d. However, the first co-prime array ge-
ometry achieves consecutive virtual array lags between −10d
and 10d, whereas the second one achieves consecutive lags
between −17d and 17d. The number of unique lag positions
is 39 for the first co-prime array and 43 for the second one.

We consider 17 narrowband sources uniformly distributed
between −50◦ and 50◦. This is the maximum number of
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sources the co-prime MUSIC algorithm can resolve. The in-
put SNRs for all sources are assumed to be identical. The
number of snapshots is 500.

The estimated spectrum from the Lasso method is shown
in Figs. 3 and 4 respectively for the two co-prime array
structures, where the input SNR levels of −10 dB and 0 dB
are considered. λt = 0.25 is chosen to perform the Lasso
method. It is seen that, while all the 17 sources are correctly
or closely identified in both co-prime array geometries, spu-
rious peaks are regularly observed around −9◦ and 9◦ in the
first co-prime array. For comparison, the results obtained
from the co-prime MUSIC is shown in Fig. 5. It is clear that
the co-prime MUSIC is unable to correctly identify the true
source spectra, particularly when the input SNR is low.
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Fig. 3. Spatial spectrum estimated using the Lasso method
(first co-prime array geometry).
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Fig. 4. Spatial spectrum estimated using the Lasso method
(second co-prime array geometry).
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Fig. 5. Spatial spectrum estimated using the co-prime MUSIC
method.

6. CONCLUSIONS

We have proposed a sparse signal recovery technique for
DOA estimation in co-prime arrays. For co-prime arrays, a

single snapshot condition arises in the process of formulat-
ing the virtual aperture with extended steering vectors. The
Lasso algorithm is used to estimate the spatial signal spec-
trum based on the difference co-array with a single snapshot.
The proposed technique achieves higher degrees-of-freedom
than the existing co-prime MUSIC. The superior performance
of the proposed technique is verified using simulation results.
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