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ABSTRACT

This paper presents a novel probabilistic framework for local-
izing multiple speakers with a microphone array. In this frame-
work, the generalized cross correlation function (GCC) of each mi-
crophone pair is interpreted as a probability distribution of the time
difference of arrival (TDOA) and subsequently approximated as a
Gaussian mixture. The distribution parameters are estimated with a
weighted expectation maximization algorithm. Then, the joint dis-
tribution of the TDOA Gaussian mixtures is mapped to a multimodal
distribution in the location space, where each mode represents a po-
tential source location. The approach taken here performs the lo-
calization by 1) reducing the search space to some regions that are
likely to contain a source and then 2) extracting the actual speaker lo-
cations with a numerical optimization algorithm. The effectiveness
of the proposed approach is shown using the AV16.3 corpus.

Index Terms— Microphone arrays, localization, multiple
speakers, Gaussian mixture, steered response power.

1. INTRODUCTION

Acoustic source localization using microphone arrays has become
an essential tool for developing more robust and accurate solutions
to a large number of signal processing problems, such as speech
separation/enhancement and speaker diarization/tracking. Acoustic
source localization approaches can be divided into two main cate-
gories: two-step approaches, where the source location is extracted
by virtue of geometrical intersection [1, 2, 3, 4] and single-step ap-
proaches, which aim at inferring the source location directly from the
signals, such as multi-channel cross correlation (MCCC) [5], adap-
tive eigenvalue decomposition [6, 7, 8], and steered response power
(SRP) based techniques (e.g. [9, 10, 11, 12]).

These approaches were originally developed for single speaker
localization and have then been extended to multiple speakers by
using agglomerative clustering techniques [13], Gaussian mixture
(GM) approximations in the location space [14, 15] as well as a sec-
tor based approach [16, 17]. Despite their relative success, these ex-
tensions have some inherent shortcomings such as a high computa-
tion cost due to the discretization of the entire space [9], the discrete
search dilemma (computation cost versus precision) [10, 11, 12], and
a general difficulty with jointly estimating the number and locations
of multiple simultaneous speakers [14, 15, 16, 17].
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In recent work [18], we proposed a probabilistic interpretation of
the SRP (denoted as pSRP) that addressed the aforementioned prob-
lems. This approach however, as most SRP-based localization meth-
ods [14, 15], does not address the problem of local maxima resulting
from the multivalued TDOA-location function, which can strongly
affect multiple speaker detection, especially when the number of mi-
crophones is low. Following a line of thought similar to our previous
work [18], we present a novel probabilistic framework which con-
sists of i) approximating each GCC function by a GM model using
a weighted expectation maximization (WEM) algorithm (Section 2),
ii) using the GM models in order to obtain a joint probability den-
sity function (pdf) that describes the entire multidimensional space
of the TDOAs, iii) mapping this distribution to the source location
space (Section 3) and, then, iv) using the resulting source location
pdf to identify regions that are likely to contain active sources. The
actual location estimates are subsequently obtained with a numerical
optimization algorithm (Section 4).

The advantage of this new approach is that it preserves the com-
putational efficiency and accuracy of our previous work [18] while
additionally solving the problem of multiple local maxima. The ex-
tension to multiple speakers is straight-forward (Section 5). The ef-
fectiveness of the proposed approach is finally demonstrated through
an experimental study in Section 6, including comparisons to the
SRP-PHAT, pSRP, and MCCC on a single speaker localization task,
and to the pSRP on a multiple speaker localization task.

2. GCC FUNCTION AS PDF OF THE TDOA

Let M denote the number of microphones, and let sg(t) denote the
signal received at microphone mg , g = 1, . . . ,M . Then the gener-
alized cross correlation (GCC) function Rq of the microphone pair
q = {mg,mh} is given by

Rq(τ) =
1

2π

∫ 2π

0

ψ(ω)Sg(ω)S∗h(ω)ejωτdω (1)

where S·(ω) denotes the short-time Fourier transforms of s·(g) and
where ψ(ω) denotes a pre-filter. A common choice of ψ(ω) is the
phase transform (PHAT) weighting [19].

The TDOA a source introduces at a microphone pair is estimated
as the time alignment which maximizes the GCC function of the sig-
nals. Hence, the higher the GCC value the more likely it is that the
alignment is the “true” TDOA. From this point of view, the nor-
malized cross-correlation of two signals can be interpreted as a pdf
of the TDOA. Alternatively, the GCC function could be regarded
as a set of observations from a hidden distribution. In this work,
the hidden distribution is a GM model. This choice is justified by
the multi-modality of the GCC function in noisy and/or reverber-
ant environments. Furthermore, the Gaussianity assumption of the
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TDOA error has been proven to be a valid assumption in speaker
tracking approaches [20, 21]. For more details, the reader is referred
to [18, 22].

Let {τ qi }
Cq

i=1 be the set of TDOA values of the q-th microphone
pair and let {wqi }

Cq

i=1 be the corresponding normalized GCC values.
Negative GCC values, if there is any, are set to zero. Our goal now
is to estimate the parameters Θ = {µqk, σ

q
k, p

q
k}
Kq

k=1 of the GM dis-
tribution (Kq ≤ Cq), which optimally approximates the GCC func-
tion at {τ qi }

Cq

i=1. The µqk, σ
q
k and pqk here denote the mean, standard

deviation and mixture weight of the k-th component. We assume
that each peak in the GCC function results from an acoustic event
in the room, which could have been either generated by a desired
source or by noise sources (the reverberation paths are assumed to
be generated by virtual noise sources). Therefore, the number of
mixture components Kq is given by the number of GCC peaks. For
the sake of readability, the microphone pair index q is dropped in
the remaining part of this section. We propose to estimate the hid-
den paramters Θ using a weighted expectation maximization (WEM)
algorithm, which iterates between two steps:

An Expectation Step which performs a soft assignment of the obser-
vations to the mixture components. This is given by the probabilities
pik, i = 1, . . . , C and k = 1, . . . ,K, which indicate how likely it
is that the observation τi was generated by component k. Formally:
pik = P(li = k|τi,Θ) where li is the sample label in the mixture.

A Weighted Maximization Step in which the mixture parameters
Θ are re-estimated using the new soft assignment:

Ck =

C∑
i=1

wi · pik, pk =
Ck∑K
k=1 Ck

(2)

µk =
1

Ck

C∑
i=1

wi · pik · τi (3)

σ2
k =

1

Ck

C∑
i=1

wi · pik · (τi − µk)2 (4)

Here, Ck can be interpreted as the soft proportion of samples that
are labeled with k. The observation weights wi incorporate the indi-
vidual information about the peaks and valleys of the GCC function.
As a result, the approximation relies more on the regions with a high
likelihood, whereas it ignores the ones with low likelihood. This can
be regarded as a “pseudo-regression” of the GCC function using a
GM distribution (see example in Figure 1).

In practice, the WEM algorithm divides the TDOA space into
TDOA-intervals {Ik}Kk=1, subsequently called intervals of domi-
nance, where a single component is assumed to be dominant in each
interval. Formally, the interval Ik associated with the k-th compo-
nent is given by: Ik = [τmink , τmaxk ] where τmink and τmaxk are
respectively the minimum and maximum values of {τi|li = k}Ci=1.
The approach proposed in [18] can be regarded as a practical ap-
proaximation of the WEM algorithm.

3. JOINT PDF OF THE SOURCE LOCATION

After estimating the GM distribution for all microphone pairs, we
create a joint pdf of the TDOAs p(τ1, . . . , τQ) under the assumption
that the τ q , q = 1, . . . , Q are independent random variables:

p(τ1, . . . , τQ) =

Q∏
q=1

p(τ q)=

Q∏
q=1

Kq∑
k=1

pqk · N
q(τ q;µqk, (σ

q
k)2) (5)
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Figure 1: The TDOA Gaussian mixture distribution estimated with
the weighted expectation maximization algorithm (Kq = 7). The
curly brackets (on top) indicate the intervals of dominance, Ik.

Theoretically, this joint pdf describes the entire multidimensional
joint space of the TDOAs. In practice however, given that the TDOA
distributions were generated by the same mixture of acoustic events
in the room, and captured by the same set of microphones, we can
conclude that not every TDOA combination is physically possible.
The subspace of physically possible combinations is obtained by
simply mapping the joint pdf to the location space using the TDOA-
location function:

τ q (s) =
‖s−mg‖ − ‖s−mh‖

c
. (6)

In this equation, s denotes the location and c denotes the speed of
sound in the air. The incorporation of this mapping into the joint
TDOA pdf from (5) leads to a pdf p(s) that describes the mixture of
acoustic events in the location space:

p(s) ≈
Q∏
q=1

Kq∑
k=1

pqk · N
q(τ q(s);µqk, (σ

q
k)2) (7)

4. ACOUSTIC SOURCE EXTRACTION/LOCALIZATION

The source location pdf p(s) is a prior multimodal distribution,
where each “mode” represents a potential acoustic source. The
key idea behind the extraction/localization of each source consists
of calculating the restriction of p(s) on that region of the location
space where the source is dominant.

4.1. Mapping the Dominance from the TDOA-Space to the Lo-
cation Space

The notion of interval of dominance in the TDOA space maps to
the region of dominance notion in the location space through the
location-TDOA function, given by (6). Formally, LetA be an acous-
tic source and let us assume that we can extract, for each microphone
pair q ∈ {1, . . . , Q}, the interval of dominance IqA whereA is dom-
inant. Then the corresponding region of dominance DA in the loca-
tion space is defined as follows:

DA = {s ∈ Space | ∀q ∈ {1, . . . , Q} : τ q(s) ∈ IqA} (8)

The corresponding indicator function 1DA of DA is given by

1DA(s) =

Q∏
q=1

1I
q
A

(s) with 1IqA(s) =

{
1 if τ q(s) ∈ IqA
0 otherwise.
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(a) Conventional SRP : Side view (b) Conventional SRP : Top view (c) Proposed Approach : Side view
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Figure 2: The graphs in (a) and (b) exemplify the SRP approach for a frame with a single speaker. Here the dominant GCC peak generates
multiple local maxima. The graph in (c) shows that the proposed approach cancels the secondary local maxima using the information
provided by the other GCC functions. Finally, the graph in (d) shows the evaluation method used in Section 6.

The extraction of A is subsequently obtained by calculating the
restriction pA(s) of p(s) on DA. This is achieved by calculating the
product of p(s) and 1DA , which simplifies to:

pA(s) ∝
Q∏
q=1

(
1I

q
A

(s) ·
Kq∑
k=1

pqk · N
q(τ q(s), µqk, (σ

q
k)2)

)
. (9)

Knowing that on each interval IqA, the GM contribution mainly
comes from the component k(A) associated to this interval, we can
further simplify pA(s) to obtain a more practical approximation:

pA(s) ≈
Q∏
q=1

pqk(A)(s) · N
q(τ q(s), µqk(A), (σ

q
k(A))

2). (10)

The acoustic source location is then obtained using numerical opti-
mization algorithms [23]. Theoretically, pA(s) is not a convex func-
tion. However, in practice this function has a sharp peak and very flat
tails (Figure 2-c). Furthermore, any initial guess from DA ensures
the convergence to the optimal location. In the following section, we
describe how the region of dominance DA can be determined.

4.2. Extraction of Regions with High Likelihood

Knowing that the {Iqk}
Kq

k=1, q = 1, . . . , Q, form a “partition” of the
TDOA space, and given the definition of the region of dominance
DA in (8), we can conclude that all the locations in DA will map to
the same combination of intervals. Hence, the extraction of DA can
be reduced to finding a single location from it. Formally, this can
be done using a coarse grid (15◦ to 30◦ or 50 to 150 cm). The grid
resolution is chosen such that at least one location falls into DA.
Then, for each location s0 in this grid, and for each microphone
pair q, 1) the associated interval of dominance Iqs0 is extracted such
that the corresponding Gaussian component N q(τ q(s), µqk, (σ

q
k)2)

maximizes τ q(s0), and 2) the cumulative distribution C(Ds0) over
the associated region of dominance Ds0 (given by (8)) is calculated
according to:

C(Ds0) =

∫
Ds0

p(s) · ds =

Q∏
q=1

∫
I
q
s0

p(τ q) · dτ q (11)

≈
Q∏
q=1

∑
{τq∈Iqs0}

Rq(τ q). (12)

The region of dominanceDA is extracted as the one with the highest
cumulative distribution. The restriction of p(s) onDA is then calcu-
lated according to (10), and the corresponding s0 (∈ DA) is used as

an initial guess to run the numerical optimization. The experiments
reported below used the gradient descent algorithm to perform this
task [23].

4.3. Acoustic Source Detection

The proposed method extracts the source location as the one with
the highest likelihood but it does not consider whether this location
has been generated by a dominant GCC peak or by a consistent set
of peaks from different GCCs. This problem becomes more difficult
in the multiple speaker scenario, as the number of current sources is
unknown. Furthermore, when only few microphones are available a
dominant GCC peak may generate many local maxima.

Finding the optimal location requires the optimization of pA(s),
which is equivalent to the minimization of the Maximum Likelihood
(ML) criterion [4, 20] given by arg mins ε (s) with

ε (s) =

Q∑
q=1

1

(σqk(A))
2
·
[
τ q (s)− µqk(A)

]2
(13)

The error function ε (s) characterizes the consistency of the op-
timal location sopt. More precisely, a high value of ε

(
sopt

)
means

that sopt has been generated by a dominant peak rather than a com-
bination of GCC peaks and vice versa. Hence, ε (s) can be used as
a validation criterion. Formally, sopt is assumed to be generated by
an actual source if ε(sopt) ≤ Γ, where Γ is a predefined threshold.

Algorithm 1 : Multiple Speaker Localization Algorithm

Let Nmax be the maximum number of speakers.
Let G be the coarse grid.
1. Estimate the GM approximations and define p(s).
2. Calculate C(Di) for each location si ∈ G.
for n = 1 : Nmax do

3. Find Dmaxn which maximizes C(Di).
4. Calculate psmax

n
(s).

5. Run the optimization of psmax
n

(s) to estimate soptn .
if ε(soptn ) ≤ Γ then

6. Add soptn to the set of speakers S.
end if
7. Remove all Di for which soptn ∈ Di.
8. Go to step 1.

end for
9. Return the set of speakers S.
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Table 1 : Single Speaker Localization Results
Approaches seq01-1p-0000 seq03-1p-0100 seq11-1p-0100

ps σs,θ σs,φ t ps σs,θ σs,φ t ps σs,θ σs,φ t
MCCC 0.28 3.50 15.56 26.25 0.66 3.27 9.75 26.61 0.68 3.17 9.65 26.56

SRP-PHAT 0.27 3.02 15.16 1.99 0.65 2.71 9.30 2.04 0.70 3.37 10.07 1.98
pSRP 0.27 3.73 13.38 0.69 0.63 3.39 8.72 0.69 0.72 4.61 10.51 0.69

PA 0.28 3.90 8.40 0.79 0.62 2.52 4.68 0.78 0.72 3.69 6.76 0.75

Table 1 : Single Speaker Localization Results
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ps σs,θ σs,φ t ps σs,θ σs,φ t ps σs,θ σs,φ t
MCCC 0.28 3.50 15.56 26.25 0.66 3.27 9.75 26.61 0.68 3.17 9.65 26.56

SRP-PHAT 0.27 3.02 15.16 1.99 0.65 2.71 9.30 2.04 0.70 3.37 10.07 1.98
pSRP 0.27 3.73 13.38 0.69 0.63 3.39 8.72 0.69 0.72 4.61 10.51 0.69

PA 0.28 3.90 8.40 0.79 0.62 2.52 4.68 0.78 0.72 3.69 6.76 0.75

Table 2 : (%) of frames with N correct simultaneous estimates
Number of seq18-2p-0101 seq40-3p-0111 seq37-3p-0001
Speakers PA pSRP PA pSRP PA pSRP

1 23.53 66.69 21.41 59.48 25.16 65.02
2 63.05 23.59 44.95 23.04 41.02 15.36
3 — — 7.47 1.72 7.51 0.96

Table 2 : (%) of frames with N correct simultaneous estimates
Number of seq18-2p-0101 seq40-3p-0111 seq37-3p-0001
Speakers PA pSRP PA pSRP PA pSRP

1 23.53 66.69 21.41 59.48 25.16 65.02
2 63.05 23.59 44.95 23.04 41.02 15.36
3 — — 7.47 1.72 7.51 0.96

Table 3 : Multiple Speaker Localization Results
seq18-2p-0101 seq40-3p-0111 seq37-3p-0001
PA pSRP PA pSRP PA pSRP

σs,θ 2.00 2.79 1.90 4.75 2.66 5.0
σs,φ 4.51 9.76 7.93 13.40 9.47 13.43
ps 0.60 0.45 0.50 0.45 0.54 0.46

Table 3 : Multiple Speaker Localization Results
seq18-2p-0101 seq40-3p-0111 seq37-3p-0001
PA pSRP PA pSRP PA pSRP

σs,θ 2.00 2.79 1.90 4.75 2.66 5.0
σs,φ 4.51 9.76 7.93 13.40 9.47 13.43
ps 0.60 0.45 0.50 0.45 0.54 0.46

5. MULTIPLE SPEAKER LOCALIZATION ALGORITHM

The proposed acoustic source localization approach can be easily
extended to the multiple speaker case. Algorithm 1 presents one
possible extension using an iterative approach. The algorithm is iter-
ative in order to avoid re-detecting the same region of dominance in
the case where more than one location si belongs to it. This idea is
implemented by successively discarding all the regions Di that con-
tain the optimal location soptn from the previous iteration (step 7). In
the case where Nmax is unknown, it can be simply overestimated.

6. EXPERIMENTS AND RESULTS

We evaluate the proposed approach using the AV16.3 corpus [24],
where human speakers have been recorded in a smart meeting room
(approximately 30m2 in size) with a 20cm 8-channel circular micro-
phone array. In this work, only 4 of the microphones are used to
highlight the ability of the proposed approach to cancel local max-
ima. The sampling rate is 16 kHz and the real mouth position is
known with an error ≤ 5cm [24]. The AV16.3 corpus has a variety
of scenarios, such as stationary or quickly moving speakers, varying
number of simultaneous speakers, etc. In the experiments reported
below, the signal was divided into frames of 512 samples (32ms);
the GCCs were calculated using PHAT [19] weighting; and a voice
activity detector was used in order to suppress silence frames.

We use a new evaluation method, based on a 2-components GM
fitting of the estimates error, noted Gs + Gn (see Figure 2-d), which
aims at modeling the ”noise+source(s)“ estimates. Due to the far-
field assumption, in which the range is ignored, the localization task
is performed in the entire 3D space but the results are limited to the
direction of arrival (DOA). More precisely, the results are reported
in terms of the azimuth and elevation precision given by the standard
deviations σs,θ and σs,φ of the Gaussian Gs (see Figure 2-d), respec-
tively, in addition to the percentage of correct estimates ps which is
nothing but the mixture weight of Gs. We also report the real-time
factor t on a standard Intel i7-2600K CPU clocked at 3.4GHz. In the
multiple speaker scenario, we report the percentage of frames with
correct number of simultaneous speakers. ps in this case represents
the percentage of correct estimates for all speakers. The detection
thresholds of the proposed approach (PA) and the pSRP method are
chosen such that the resulting false alarm rate is the same for both
methods and equal to 0.3.

Table 1 presents the performance of the proposed approach on
single source sequences, and compares it to two well-known ap-
proaches, namely the SRP-PHAT [9] and the MCCC [5]. In addition

to this, results for the probabilistic SRP (pSRP) [18] are shown. Note
that in these experiments the detection approach from Section. 4.3
was not used. Hence, Nmax was set to 1. The coarse grid reso-
lution is 20◦ × 30◦ × 50cm for the azimuth, elevation and range,
respectively, whereas the resolution of the SRP and MCCC grid is
1◦ × 1◦ × 10cm. The merits of applying the proposed approach
to multiple speaker localization are shown in Tables 2 and 3, which
present results for sequences with a varying number of simultaneous
speakers (between zero and three). In these experiments Nmax = 5.

The results in Table 1 show that the proposed approach performs
better than the other approaches. More precisely, the azimuth pre-
cision σs,θ and the percentage ps of correct estimates are compara-
ble, whereas the elevation precision σs,φ is highly improved. This
is mainly due to the reduction of the elevation variance around the
peaks, which become sharper (see e.g. Figure 2-c). Regarding the
computation cost, we can conclude that the proposed approach is
comparable to the Probabilistic SRP but three times faster than the
classical SRP. The MCCC approach however is very slow due to
the calculation of the correlation matrix determinant for all locations
at each frame. Regarding the multiple speaker scenarios in Tables
2 and 3, we can see that the proposed approach deals better with
the problem of local maxima resulting from the multivalued TDOA-
location function, where a dominant GCC peak may generate many
peaks in the location space (e.g. Figure 2). This improvement ap-
pears in the increased number of correct estimates ps, and the per-
centage of frames with correct simultaneous estimates. The latter
shows that the proposed approach leads to a lower number of frames
with one correct estimate (compared to the pSRP), whereas the per-
centage of frames with two or more correct estimates increases. This
shows the capacity of the proposed approach to detect the sources
in the location space. Regarding the localization precision, we can
once again conclude that the proposed approach gives more accurate
elevation estimates and comparable azimuth.

7. CONCLUSION

We have proposed a probabilistic framework to the multiple speaker
localization problem. This approach presents a different method
to combine the GCC functions in order to increase the localization
precision, especially when only few microphones are available. The
proposed method was also shown to be more effective in cancelling
the local maxima resulting from the multivalued TDOA-location
function, which highly affects the multiple speaker detection perfor-
mance. The future work will focus on developing a better detection
approach to improve the noise/source decision.
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