
DATA-ADAPTIVE REGULARIZATION FOR DOA ESTIMATION USING SPARSE
SPECTRUM FITTING

J. Zheng and M. Kaveh

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA

ABSTRACT

Regularization parameter selection is critical to the per-
formance of many sparsity-exploiting Direction-Of-Arrival
(DOA) estimation algorithms. In this paper, we propose an
automatic selector for choosing this parameter in the DOA
estimation algorithm presented in [1], which is based on the
analysis of its optimality conditions. This selector requires
very limited prior information and is computationally effi-
cient. Through simulation examples, the effectiveness and
robustness of the selector are illustrated.

Index Terms— Direction-Of-Arrival, Sparse Representa-
tion, Regularization Parameter Selection

1. INTRODUCTION

Following the broad appeal and wide-ranging developments
in Sparse Signal Recovery (SSR) algorithms [2], a number
of sparsity-exploiting Direction-Of-Arrival (DOA) estimation
methods have also emerged, e.g. [1] [3][4]. These methods
usually use L1-norm regularization with an associated regu-
larization parameter. The level of regularization through the
selection of such a parameter is critical to the effectiveness
of the associated estimator. Unfortunately, the range of good
values for the parameters are dependent on the true DOAs
and signal powers, and need to be carefully tuned for each
realization. In this paper, we focus on the development of a
computationally-efficient data-adaptive selection mechanism
for determining the regularization parameter of a particular
DOA estimation algorithm proposed in [1], which is referred
to in this paper by Sparse Spectrum Fitting (SpSF) estimator.

Consider an antenna array of M elements and assume L
narrow-band far-field signals impinge on the array from di-
rections θ1, ..., θL in the presence of additive white Gaussian
noise of variance σ2. The spatial covariance matrix Q ∈
CM×M for uncorrelated sources is defined by

Q =

L∑
i=1

sia(θi)a
H(θi) + σ2I, (1)

where a(θ) ∈ CM×1 is the steering vector at direction θ, “H”
is conjugate transpose, si > 0 is the power of the signal from
direction θi and I is the identity matrix. Generally, the DOA

estimation methods involve a search over a grid of many can-
didate directions, which are denoted by ϕ1, ..., ϕK with K ≫
L. If the true DOAs belong to this grid, θi ∈ {ϕ1, ..., ϕK} for
i = 1, ..., L, (1) can be rewritten as

Q =
K∑

k=1

p◦ka(ϕk)a
H(ϕk) + σ2I, (2)

where p◦k = si if ∃θi = ϕk, otherwise p◦k = 0. By defining
av(ϕ) = vec(a(ϕ)aH(ϕ)) and AK = [av(ϕi), ..., av(ϕK)],
(2) can be reformulated as:

Qv = AKp◦ + σ2Iv, (3)

where Qv = vec(Q), Iv = vec(I), p◦ = [p◦1, ..., p
◦
K ]T and

vec(·) represents the vectorization operation. In practice, Q,
which is unknown, is replaced by the sample covariance ma-
trix R = 1

N

∑N
t=1 y(t)y

H(t), where y(t) ∈ CM×1 is the ar-
ray snapshot at time t and N is the number of snapshots. Us-
ing an “error term” E to summarize noise contribution, sam-
ple estimates and any other modeling errors in R, we have:

Rv = AKp◦ +Ev, (4)

where Rv = vec(R) and Ev = vec(E). By recognizing (4)
as a sparse representation, SpSF is formulated as

p∗ = argmin
p

∥Rv −AKp∥22 + β∥p∥1

s.t. pi > 0, i = 1, 2, ...K,
(5)

where β is a regularization parameter. Note that Equation (5)
is an equivalent formulation of SpSF as the one proposed in
[1].

In Section 2, the contribution of this paper and its relation
to prior works are discussed. Following that, in Section 3,
the optimality conditions of SpSF are analyzed and a Monte
Carlo process is proposed to efficiently evaluate the probabil-
ity of perfect support recovery of SpSF. An upper bound on
this probability is formulated in Section 4 which, in combi-
nation with the Monte Carlo evaluation process, serves as the
basis for the automatic β-selector. Simulation results illus-
trating the effectiveness and the robustness of the selector are
presented in Section 5. Finally, the conclusions are made in
Section 6.
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2. RELATION TO PRIOR WORK

The β-selector proposed in this paper is based on the anal-
ysis of the optimality conditions of SpSF, which follows the
derivations presented in [5]. Similarly, based on its optimal-
ity conditions, the work [6] analyzed the probability of per-
fectly recovering the support of p◦ by SpSF and proposed an
evaluation process which is similar to the idea of Monte Carlo
evaluation process presented in this paper. Further, an explicit
formula of the range of βs, which can give perfect support re-
covery of p◦, was presented in [6]. However, such range is
usually very small if compared to that for correct DOA es-
timates. More importantly, the formula relies on the exact
knowledge of the true DOAs and, therefore, cannot be used
in practical applications. Another choice for selecting β can
be Cross Validation (CV). Although CV has been success-
fully used in SSR, its computational complexity is prohibitive
for DOA estimation problems. In this paper, we propose an
upper bound on the probability of correct support recovery
of SpSF, based on which an automatic β-selector for SpSF
is constructed. This selector only requires very limited infor-
mation and is computationally efficient. Because of limited
space, the details of the derivations are omitted in this paper,
but can be found in [7].

3. EVALUATION OF THE PROBABILITY OF MSC
SOLUTIONS

In this section, we present a Monte Carlo simulation process
to efficiently evaluate the probability of perfect support re-
covery of p◦ by SpSF, which is obtained through the analysis
of the optimality conditions of SpSF. This section starts with
some necessary definitions.

The true sparse spatial spectrum is denoted as p◦ =
[p◦1, ..., p

◦
K ]T where, without loss of generality, only the first

L elements are assumed to be non-zero and constitute the
subvector p◦(1) = [p◦1, ..., p

◦
L]

T . The other elements in p◦ con-
stitute the subvector p◦(2). Similarly, we denote the solutions
of SpSF by p∗, and its subvectors by p∗(1) and p∗(2) respec-
tively. A solution p∗ is called Model Selection Consistent
(MSC) if sign(p∗

i ) = sign(p◦
i ) for i = 1, ...,K [5]. Such

solutions provide perfect support recovery of p◦ and the
probability of the existence of such solutions (in regard-
less of the value of β) is denoted as PMSC. Further, for
simplicity in derivations, we define u∗ = p∗ − p◦ and its
corresponding subvectors u∗

(1) and u∗
(2). By partitioning AK

into submatrices AK,(1) and AK,(2), which consist of the
first L and the last K − L columns of AK respectively, we
can define: for i, j ∈ {1, 2}

Cij = ℜ[AH
K,(i)AK,(j)]

bi = ℜ[AH
K,(i)Ev],

where ℜ[·] represents the real part and b = [bT1 , b
T
2 ]

T .

Based on the above definitions, the sufficient and neces-
sary condition for SpSF’s MSC solutions is that: ∃u∗

(1) satis-
fying the following element-wise inequalities

u∗
(1) > −p◦(1) (6a)

C11u
∗
(1) − b1 = −0.5β1L (6b)

C21u
∗
(1) − b2 > −0.5β1K−L. (6c)

By the Equation (6b),

u∗
(1) = C−1

11 (b1 − 0.5β1L), (7)

and the condition can be simplified to: ∃β satisfying

βC−1
11 1L 6 2C−1

11 b1 + 2p◦(1) (8a)

β(C21C
−1
11 1L − 1K−L) 6 2C21C

−1
11 b1 − 2b2, (8b)

where 1i, i × 1, is an all-1 vector. In this paper, any β
satisfying the inequalities of (8) is also called MSC (mean-
ing that at least one of its corresponding solutions is MSC).
Since the vectors C−1

11 1L and C21C
−1
11 1L − 1K−L contain

both negative and positive elements, each of (8a) and (8b)
is generally equivalent to two inequalities for β (an upper
limit and a lower limit on β). Given a specific realization of
{b1, b2, p◦(1), θ1, ..., θL}, these four limits and β > 0 define a
range, SMSC , in which β is MSC. If SMSC is empty, then,
for this realization, there is no MSC β and it is impossi-
ble for SpSF to find an MSC solution. Therefore, PMSC is
equivalent to the probability that SMSC is non-empty.

Although an explicit formula for PMSC can be beneficial,
it is very difficult (if not impossible) to obtain for general
cases. Thus, we propose to evaluate PMSC through Monte
Carlo simulations. Specifically, in NT independent trials, the
signal and the noise samples are randomly generated accord-
ing to their distribution functions, which are assumed to be
known. Then, b1 b2 and p◦(1) are computed and substituted
into (8). Using the values of these variables, SMSC is cal-
culated and the number of trials in which it is non-empty is
divided by NT , providing an estimate of PMSC . NT is cho-
sen to be sufficiently large so that this estimate becomes ac-
curate enough. Although this evaluation process for PMSC is
computationally efficient, it is not useful for practical applica-
tions since it requires exact knowledge of the true DOAs and
the distribution functions. However, the optimality conditions
presented in this section and the idea of the Monte Carlo sim-
ulation process serve as the basis for the automatic β-selector
proposed in next section.

4. DATA-ADAPTIVE SELECTOR OF β

As a regularized optimization problem, the selection of the
regularization parameter β of SpSF is critical to its estimation
performance. Generally, the “good” values of β are depen-
dent on the DOAs, signal powers and etc. Thus, automatic
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selection of β is highly desired. In this section, we present
an upper bound on PMSC , based on which an automatic and
computationally efficient β-selector is proposed.

According to its definition, PMSC is always upper bounded
by Pθ which is the probability that SpSF can find a solution
(either MSC or not) giving correct DOA estimates. Here,
a solution p∗ gives correct DOA estimates if min{p∗(1)} >

max{p∗(2)}, and the corresponding β is called “proper”. As
in (8), the optimality conditions of such solutions define a
range of proper β, which is a superset of SMSC , and in order
to obtain an upper bound on PMSC we try to enlarge SMSC

by using these optimality conditions.
A solution giving correct DOA estimates has to satisfy:

∃u∗
(1) and u∗

(2) such that

2C21u
∗
(1) + 2C22u

∗
(2) − 2b2 > −β1K−L. (9)

If p∗ is not MSC, u∗
(2) = p∗(2) > 0 is non-zero and C22u

∗
(2) >

0 since all the elements of C22 are non-negative (easy to
prove). Thus, (9) is actually a relaxation of (6c) and, by
replacing (6c) with (9), one can obtain an upper bound on
PMSC , which unfortunately cannot be evaluated since u∗

(2)

is unknown. Therefore, we propose to use a randomly gen-
erated non-negative vector to replace the unknown u∗

(2) and
remove the randomness through the Monte Carlo evaluation
process of the upper bound. Such random vector is chosen to
be (min{C−1

11 b1 + p◦(1)} − 0.5βmin{C−1
11 1L})eG, which is

non-negative by (7), and eG ∈ RK−L×1 is a vector of 0s ex-
cept for its rth1 , ..., rthG elements being 1. Here, G is a param-
eter to be specified by the user and r1, ..., rG are the indices
randomly generated in each trial of the Monte Carlo process.
Using such a random vector to substitute u∗

(2) in (9), we ob-
tain

2C21u
∗
(1)+(2mbp−βmC1)C22eG−2b2 > −β1K−L, (10)

with mbp = min{C−1
11 b1+p◦(1)} and mC1 = min{C−1

11 1L}.
Replacing (10) into (6) gives the inequalities for the upper
bound:

β > 0 (11a)

βC−1
11 1L 6 2C−1

11 b1 + 2p◦(1) (11b)

β(C21C
−1
11 1L +mC1C22eG − 1K−L) 6

2C21C
−1
11 b1 + 2mbpC22eG − 2b2.

(11c)

The range of β defined by (11) is denoted as SUP (for any
realization, SMSC ⊆ SUP ) and, a candidate regularization
parameter, βc, is more likely to be “proper” than the others
if it falls in SUP with larger probability. Therefore, PUP is
an upper bound on PMSC , where PUP is the probability that
SUP is non-empty (when G = 0, PUP = PMSC). Similar
to PMSC , PUP can be evaluated through Monte Carlo evalu-
ation, where r1, ..., rG need to be regenerated in each of the
trials to remove the randomness of eG.

Based on the upper bound (11), the automatic β-selector
for SpSF is presented in the following. Here, we use fi(ζi) i =
1, ..., L and fn(ζn) to denote the distribution functions of
sources and noise, respectively, and ζs are the parameters of
these distributions (e.g. mean and variance for Gaussian dis-
tributions). To utilize the upper bound, the β-selector assumes
knowledge of L, G, fi, i = 1, ..., L and fn and any other in-
formation, including θi, ζi, i = 1, ..., L and ζn, are replaced
by rough estimates obtained by a lower resolution spectrum
estimator, such as MVDR [8]. Using βc, c = 1, ...,Kβ to
denote all the candidate choices of β, the procedure of the
selector is:
1. Use a lower resolution spectrum estimator, such as MVDR,

to estimate θ̃i, ζ̃i and ζ̃n, i = 1, ..., L

2. Set Zc = 0, c = 1, ...,Kβ

3. for t = 1, ..., NT

• Randomly generate vector eG
• Generate signal and noise samples by fi(ζ̃i) and fn(ζ̃n)

• Calculate SUP from (11)
• If βc ∈ SUP , Zc = Zc + 1, c = 1, ...,Kβ

4. Find the maximum among Zcs and denote its index by c∗

5. Output βc∗ for SpSF
Note that, this automatic selector, rather than being fixed,
adaptively chooses the regularization parameter β based on
actual data-generated covariance. Further, as shown in the
next section, this method is not sensitive to the values of L and
G, and very rough estimates of θs and ζs are generally effec-
tive (combined with SpSF) to achieve satisfactory DOA es-
timation performance. More importantly, the computational
cost of this selector is negligible compared with that of Cross
Validation and even the cost of the optimization of SpSF it-
self.

5. SIMULATION RESULTS

In this section, the effectiveness and robustness of the au-
tomatic β-selector are illustrated through simulation exam-
ples comparing the DOA estimate Root-Mean-Squared-Error
(RMSE) of SpSF (using the selector) with those of MUSIC
[9], MVDR [8], L1-SVD [3] and the Cramer-Rao Lower
Bound [10]. We consider a ULA with M = 8 elements and
d = 0.5 normalized inter-element distance. L = 2 uncor-
related sources impinge on the array from θ1 = −5◦ and
θ2 = 5◦ and N = 300 snapshots are available. The grid of
candidate directions is chosen to be {−80◦,−79.9◦, ..., 80◦}.
Further, the sources and the noise are both assumed to be
zero-mean Gaussian, and the noise power σ2 is fixed at 1.
1000 independent trials are used to evaluate the RMSEs and
NT = 1000 for the β-selector.

In Figure 1, we compare the estimation performance of
all the methods using the exact value of L. “SpSF (Man-
ual)” is the RMSE of SpSF with the fixed β exhaustively
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Fig. 1. RMSE of DOA Estimation, L = 2 and G = 4

searched. “SpSF (AS)” is the RMSE of SpSF combined with
the β-selector, using G = 4, the true DOAs and the exact
distributions. “SpSF (AS+MVDR)” is the same as “SpSF
(AS)” except that, the selector only knows that the sources
and the noise are uncorrelated zero-mean Gaussian ran-
dom variables. In each trial, it uses the estimated DOAs
(θ̂1 and θ̂2) by MVDR, the estimated noise power σ̂2 by the
smallest eigenvalue of R and the estimated signal powers
p̂i = pmvdr

i − σ̂2/M, i = 1, 2 where pmvdr
i is the value of the

MVDR spectrum at θ̂i. “MUSIC”, “MVDR” and “L1-SVD”
are the RMSEs of the corresponding methods, and the regu-
larization parameter of L1-SVD is selected in the same way as
“SpSF (Manual)”. “CRB” stands for the stochastic Cramer-
Rao Lower Bound, which uses the knowledge that the sources
are uncorrelated. As shown by Figure 1, the βs suggested by
the selector using either the true or the initial rough estimates
of DOAs and powers can help SpSF achieve almost the same
DOA estimation performance as exhaustively searched and
fixed regularization parameter (“SpSF (Manual)”). Further,
the large error threshold of “SpSF (Manual)”, “SpSF (AS)”,
“SpSF (AS+MVDR)” and L1-SVD are 5dB lower than that
of MUSIC.

In Figure 2 and Figure 3, the robustness of the β-selector
with respect to the values of G and errors in L is illustrated. In
Figure 2, we still assume availability of the exact knowledge
of L but use different values of G for “SpSF (AS+MVDR)”.
In contrast, we keep G = 4 in Figure 3 but provide different
values of L to the selector. As shown by these figures, SpSF
is not sensitive to the values of G and the errors in L. Further,
when SNR is relatively large, small perturbations in either G
or L cause no significant performance degradation.

6. CONCLUSION

In this paper, based on the analysis of the optimality con-
ditions of SpSF, an upper bound on its probability of cor-
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rect support recovery and an efficient Monte Carlo evalua-
tion process are presented. Further, by utilizing this upper
bound, an automatic selector of the regularization parameter
of SpSF is proposed, which requires very limited prior in-
formation and is computationally efficient. The effectiveness
and robustness (with respect to its parameters) of the selec-
tor are illustrated through simulation examples comparing the
DOA estimation performance of SpSF with that of MUSIC,
L1-SVD and etc. It is shown that this automatic selector can
help SpSF to achieve almost the same performance as exhaus-
tively searched and fixed (ESF) regularization parameters for
the cases of uncorrelated sources. Although not presented in
this paper, this automatic selector, in combination with SpSF,
was also applied to the cases of highly correlated sources in
[7] and shown to provide even better DOA estimation perfor-
mance than using ESF regularization parameters.

3960



7. REFERENCES

[1] J. Zheng, M. Kaveh, and H. Tsuji, “Sparse spectral fit-
ting for direction of arrival and power estimation,” in
in Proc. the 15th IEEE Workshop on Statistical Signal
Process., Cardiff, Wales, Sept. 2009.

[2] D.L. Donoho and M. Elad, “Optimally sparse repre-
sentation in general (nonorthogonal) dictionaries via l1
minimization,” in Proc. Natl, Acad. Sci., USA, 2003,
vol. 100, pp. 2197–2202.

[3] D.M. Malioutov, M. Cetin, and A.S. Willsky, “A sparse
signal reconstruction perspective for source localization
with sensor arrays,” IEEE Trans. Signal Process., vol.
53, no. 8, pp. 3010–3022, Aug. 2005.

[4] P. Stoica, P. Babu, and J. Li, “Spice: A sparse
covariance-based estimation method for array process-
ing,” IEEE Trans. on Signal Process., vol. 59, no. 2, pp.
629–638, Feb. 2011.

[5] P. Zhao and B. Yu, “On model selection consistency of
lasso,” J. Machine Learning Research, pp. 2541–2563,
Dec. 2006.

[6] J.S. Picard and A.J. Weiss, “Error bounds for convex
parameter estimation,” Signal Process., vol. 92, no. 5,
pp. 1328–1337, Dec. 2011.

[7] J. Zheng and M. Kaveh, “Sparse spatial spectral es-
timation: A covariance fitting algorithm, performance
and regularization,” Submitted to IEEE Trans. on Signal
Process., Sep. 2012.

[8] J. Capon, “High resolution frequency-wavenumber
spectrum analysis,” Proc. IEEE., pp. 1408–1418, Aug.
1969.

[9] R.O. Schmidt, “Multiple emitter location and signal pa-
rameter estimation,” in Proc. RADC Spectrum Estima-
tion Workshop, Rome, NY, Sept. 1979, pp. 243–258.

[10] H.L. Van Trees, Optimum Array Processing, John
Wiely, 1st edition edition, 2003.

3961


