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ABSTRACT
A distributed or multi-channel system consisting of multiple sensors
is considered. At each sensor a sequence of observations is taken,
and at each time step, a summary of available information is sent
to a central decision maker, called the fusion center. At some point
of time, the distribution of observations at an unknown subset of
the sensor nodes changes. The objective is to detect this change as
quickly as possible, subject to constraints on the false alarm rate, the
cost of observations taken at the sensors and the cost of communi-
cation between the sensors and the fusion center. Minimax formula-
tions are proposed for this problem. An algorithm called DE-Censor-
Sum is proposed, and is shown to be asymptotically optimal for the
proposed formulations, for each possible post-change scenario, as
the false alarm rate goes to zero. It is also shown, via numerical
studies, that the DE-Censor-Sum algorithm performs significantly
better than the approach of fractional sampling, where the cost con-
straints are met based on the outcome of a sequence of biased coin
tosses, independent of the observation process.

Index Terms— Quickest change detection, observation control,
transmission control, minimax, multi-channel systems, asymptotic
optimality.

1 Introduction
In this paper we consider a distributed system which comprises of a
set of sensors and a central decision maker called the fusion center.
At each sensor a sequence of random variables is observed over time.
At each time step, a processed version of the observations is trans-
mitted from each sensor to the fusion center. At some point of time,
called the change point, the distribution of the observations at some
unknown subset of the sensors changes. The observations are inde-
pendent conditioned on the change point, and identically distributed
before and after the change point (this is called the i.i.d. model in
the following). The distributions of the observations can vary from
sensor to sensor. The objective is to detect this change as quickly
as possible. Detecting the change even before the change actually
occurs is considered as a false alarm and is not desirable. Hence,
the change has to be detected subject to a constraint on the false
alarm rate. In many practical systems where the above model is ap-
plicable, e.g., quality control, infrastructure, environment or habitat
monitoring, and spectrum sensing in cognitive radios, there is a cost

This research was supported in part by the National Science Foundation
under grant CCF 08-30169, CCF 11-11342 and DMS 12-22498, through the
University of Illinois at Urbana-Champaign. This research was also sup-
ported in part by the U.S. Defense Threat Reduction Agency through sub-
contract 147755 at the University of Illinois from prime award HDTRA1-10-
1-0086.

associated with acquiring observations at each sensor. Also, there is
a cost associated with the communication between the sensors and
the fusion center. That is there is a cost associated with acquiring
data in the system. Thus, the change also has to be detected in a
data-efficient way.

The classical centralized version of the quickest change detec-
tion problem, where a change has to detected in the distribution of
a single sequence of random variables, is well studied in the liter-
ature [1], [2], [3], [4], [5]. See [6], [7], and [8] for some recent
surveys. The objective in the classical setting is to detect a change in
the distribution of random variables, so as to minimize some version
of the average delay, subject to a constraint on the false alarm rate.
Depending on the availability of the information on the distribution
of the change point, the quickest change detection problem is either
studied in the Bayesian setting of [1], or in non-Bayesian or minimax
settings of [2] and [3].

In [9] and [10] we extended the classical quickest change detec-
tion formulations studied in [1], [2] and [3], by putting an additional
constraint on the cost of observations used in the detection process.
We proposed problem formulations, for the Bayesian setting in [9],
and for two minimax settings in [10], in which the objective was to
minimize some version of the average delay, subject to constraints
on the false alarm rate and a version of the average number of ob-
servations taken before the change point. For the i.i.d. model, we
proposed two-threshold extensions of the classical single-threshold
algorithms, and showed that they are asymptotically optimal for the
proposed formulations. We also showed via numerical results that
the two-threshold algorithms we proposed provides significant gain
in performance as compared to the approach of fractional sampling,
in which the constraint on the observation cost is met by skipping
samples randomly.

In [11], we used the insights obtained from [9] and [10] to
propose data-efficient algorithms for distributed systems when the
change affects all the sensors. We showed that the proposed algo-
rithms have good trade-off curves and provide a significant gain in
performance as compared to the approach of fractional sampling.

In this paper we extend the results from [9], [10] and [11] to
study data-efficient quickest change detection (DE-QCD) in a dis-
tributed system described above, when the subset of sensors affected
by the change is not known at the fusion center. Since, the knowl-
edge of the distribution of the change point is generally not available
in practice, we study the problem in minimax settings. Specifically,
we propose minimax formulations for distributed systems in which
the objective is to find a stopping time on the information received
at the fusion center, so as to minimize a version of the worst case
average delay. This delay has to be minimized subject to constraints
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on the false alarm rate, the cost of observations used at each sensor,
and the cost of communication between each sensor and the fusion
center. We propose an algorithm called the DE-Censor-Sum algo-
rithm, and show that the algorithm is asymptotically optimal for the
proposed formulations, for each possible post change scenario, as
the false alarm rate goes to zero. We also show that the algorithm
provides a significant gain in performance as compared to the ap-
proach of fractional sampling, where the constraints on the cost of
data is met by skipping and transmitting samples randomly.

In the absence of a constraint on the cost of communication be-
tween the sensors and the fusion center, the distributed setting is
referred to as the multi-channel setting. Since, the multi-channel set-
ting is a special case of the distributed setting, the above results on
the DE-Censor-Sum algorithm are valid for the multi-channel setting
as well.

Bayesian quickest change detection in a sensor network with ob-
servation control is studied in [12], and with communication con-
straint is studied in [13] and [14]. However, the quickest change
detection problem for sensor networks, when the subset of affected
sensors is not known, under additional constraints on the observa-
tion cost and the cost of communication, and in a minimax setting,
is not studied in the literature. Also, to the best of our knowledge,
data-efficient quickest change detection in a multi-channel setting is
not studied in the literature.

2 Centralized Minimax Formulations for DE-
QCD and the DE-CuSum algorithm

Since, the formulations and algorithm proposed in this paper cru-
cially depend on the formulations and the algorithm proposed in
[10], in this section we provide a detailed overview of the results
from [10]. In the following, we use En, Pn to denote the expecta-
tion and the probability measure when the change occurs at time n,
n ≤ ∞. We say p(α) ∼ q(α) or p(α) ≤ q(α)(1+o(1)), as α→ 0,
to denote p(α)/q(α) → 1 and limα p(α)/q(α) ≤ 1, respectively,
as α → 0. We use D(f || g) to represent the K-L divergence be-
tween the p.d.fs f and g. We assume that the moments of up to third
order of all the log likelihood ratios appearing in this paper are finite
and positive.

In [10] we considered data-efficient quickest change detection
in a single observation sequence. We considered an observation se-
quence {Xn}: {Xn} are i.i.d. with probability density function
(p.d.f.) f0 before the change point γ, and are i.i.d. with p.d.f. f1

after the change point γ. A decision maker observes the random
variables {Xn} over time and has to detect this change in distribu-
tion as quickly as possible, subject to constraints on the false alarm
rate and the fraction of time observations are taken before change.
Let Mn be the indicator random variable such that Mn = 1 if Xn is
used for decision making, and Mn = 0 otherwise. Let

In =
[
M1, . . . ,Mn, X

(M1)
1 , . . . , X(Mn)

n

]
,

represent the information at time n. Here, X(Mi)
i represents Xi if

Mi = 1, otherwise Xi is absent from the information vector In.
Let τ be a stopping time on the information sequence {In}, that is
I{τ=n} is a measurable function of In. Here, IF represents the in-
dicator of the event F . For time n ≥ 1, based on the information
vector In, a decision is made whether to stop and declare change
(τ = n) or to continue taking observations (τ > n). If the decision
is to continue, a decision is made as to whether to take or skip the ob-
servation at time n+1. Thus,Mn+1 is a function of the information
available at time n, i.e.,

Mn+1 = φn(In),

where, φn is the control law at time n. The decision of whether or
not to take the first observation is taken without observing {Xn}.
In the absence of a prior information on the distribution of γ, M1 is
typically set to 1, that is the first sample is always taken. A policy for
data-efficient quickest change detection is Ψ = {τ, φ0, . . . , φτ−1}.

To capture the cost of observations used before γ, we proposed a
new metric for data-efficiency in mimimax settings: the Pre-change
Duty Cycle (PDC):

PDC(Ψ) = lim sup
n

1

n
En

[
n−1∑
k=1

Mk

∣∣∣τ ≥ n] . (1)

We note that PDC ≤ 1. If in a policy all the samples are taken, then
the PDC for that policy is 1. If every other sample is skipped, then
the PDC for that policy is 0.5.

For delay and false alarm, we considered the metrics used in [2]:
the Worst case Average Detection Delay (WADD)

WADD(Ψ) = sup
n

ess sup En
[
(τ − n)+|In−1

]
, (2)

and the False Alarm Rate (FAR)

FAR(Ψ) = 1/E∞ [τ ] . (3)

We considered the following data-efficient minimax formulation
Problem 1 ([10]).

minimize
Ψ

WADD(Ψ),

subject to FAR(Ψ) ≤ α, (4)
and PDC(Ψ) ≤ β.

Here, 0 ≤ α, β ≤ 1 are given constraints.

We also studied the data-efficient minimax formulation where
instead of WADD, the following Conditional Average Detection De-
lay (CADD) metric from [3] was used:

CADD(Ψ) = sup
n

En [τ − n|τ ≥ n] . (5)

Problem 2 ([10]).

minimize
Ψ

CADD(Ψ),

subject to FAR(Ψ) ≤ α, (6)
and PDC(Ψ) ≤ β.

Here, 0 ≤ α, β ≤ 1 are given constraints.

We then proposed an algorithm, that we called the DE-CuSum
algorithm, and showed that it is asymptotically optimal for both the
above problems, as α → 0. The DE-CuSum algorithm is defined
below.

Algorithm 1 (DE− CuSum: ΨW(D,µ, h)). Start with W0 = 0
and fix µ > 0, D > 0 and h ≥ 0. For n ≥ 0 use the following
control:

Mn+1 =

{
0 if Wn < 0

1 if Wn ≥ 0

τW = inf {n ≥ 1 : Wn > D} .

The statistic Wn is updated using the following recursions:

Wn+1 =

{
min{Wn + µ, 0} if Mn+1 = 0

(Wn + logL(Xn+1))h+ if Mn+1 = 1

where (x)h+ = max{x,−h}, and L(X) = f1(X)
f0(X)

.
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If h = 0, the DE-CuSum statistic Wn never becomes negative
and hence reduces to the CuSum statistic [15] and evolves as: W0 =
0, and for n ≥ 0,

Wn+1 = max{0,Wn + logL(Xn+1)}.
The evolution of the DE-CuSum algorithm is plotted in Fig. 1. If
h < ∞, the DE-CuSum statistic evolves as follows. Initially the
DE-CuSum statistic evolves according to the CuSum statistic till the
statistic Wn goes below 0. Once the statistic goes below 0, samples
are skipped depending on the undershoot of Wn (this is also the
sum of the log likelihood ratio of the observations) and the design
parameter µ. Specifically, the statistic is incremented by µ at each
time step, and samples are skipped tillWn goes above zero, at which
time it is reset to zero. At this point, fresh observations are taken and
the process is repeated till the statistic crosses the threshold D, at
which time a change is declared. The parameter µ is a substitute
for the Bayesian prior ρ that is used in the DE-Shiryaev algorithm
described in [9], and is chosen to meet the constraint on the PDC.
Thus, the DE-CuSum algorithm is a sequence of SPRTs ([16], [17])
intercepted by ‘sleep’ times controlled by the undershoot and the
parameter µ. If h <∞, the number of consecutive samples skipped
is bounded by h/µ+ 1.
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Fig. 1: Typical evolution of the CuSum statistic and the DE-CuSum statistic
evaluated using the same set of samples. Note that the CuSum statistic is
always greater than the DE-CuSum statistic.

Let τC represent the stopping time for the CuSum algorithm. The
following result is proved in [10].

Theorem 2.1 ([10]). For any µ, h, and D,

FAR(ΨW) ≤ FAR(τC),

WADD(ΨW) ≤WADD(τC) + constant .
(7)

Also, there exists µ∗ and h∗ such that

PDC(ΨW(D,µ∗, h∗)) ≤ β, ∀D ≥ 0.

Remark 1. Thus, setting D = | logα| ensures that FAR(ΨW) ≤ α
[2]. It is well known that the CuSum algorithm is asympototically
optimal for both Problem 1 and Problem 2 when β = 1, with delay
WADD(τC) ∼ | logα|

D(f1 || f0)
, as α → 0 [18]. This implies that the

DE− CuSum algorithm is asymptotic optimal, for both Problem 1
and Problem 2 for each fixed β, as α→ 0, with the same asymptotic
delay.

A good approximation for PDC for a large h is

PDC ≈ µ

µ+D(f0 || f1)
. (8)

Thus, to design the DE− CuSum algorithm to achieve a smaller
value of PDC, that is to design the algorithm to drop a larger frac-
tion of samples before change, one has to select a smaller value for
the parameter µ.

In [10], we also showed via simulations that the DE-CuSum al-
gorithm provides a significant gain in performance as compared to
the approach of fractional sampling, where the CuSum algorithm is
used and the PDC constraint is met by skipping samples randomly.

3 Problem formulation for distributed systems
and the DE-Censor-Sum algorithm

The distributed system is assumed to consist of L sensors and a fu-
sion center. At sensor ` the sequence {Xn,`}n≥1 is observed, where
n is the time index. At γ, the distribution of {Xn,`} in a subset
{k1, k2, · · · , km} ⊂ {1, 2, · · · , L} of the streams changes, from
f0,` to say f1,`. {Xn,`} are independent across indices n and ` con-
ditioned on γ. The distributions f0,` and f1,` are known to the deci-
sion maker but the affected subset {k1, k2, · · · , km} is not known.

In analogy with the notation used in Section 2, let {φn,`} be the
observation control law at sensor `, i.e.,

Mn+1,` = φn,`(In,`),

where In,` =
[
M1,`, . . . ,Mn,`, X

(M1,`)

1,` , . . . , X
(Mn,`)

n,`

]
. Let

Yn,` = gn,`(In,`)

be the information transmitted from sensor ` to the fusion center.
If no information is transmitted to the fusion center, then Yn,` =
NULL, which is treated as zero at the fusion center. Here, {gn,`} is
the transmission control law at sensor `. Thus, the decision to take or
skip a sample at sensor `, and the decision on what to transmit from
sensor ` to the fusion center, is based on the information at sensor `
alone. Let

Yn = {Yn,1, · · · , Yn,L}
be the information received at the fusion center at time n, and let τ
be a stopping time on the sequence {Yn}. Let

Π = {τ, {φn,`}τ−1
n=0, {gn,`}

τ
n=1}

be a policy for data-efficient quickest change detection in distributed
systems.

Define PDC`, the PDC for sensor ` as

PDC`(Π) = lim sup
n

1

n
En

[
n−1∑
k=1

Mk,`

∣∣∣τ ≥ n] . (9)

Also define Tn,` as Tn,` = 1 if Yn,` 6= NULL. We now define the
new metric for communication efficiency, the Pre-change Transmis-
sion Cost at sensor ` (PTC`)

PTC`(Π) = lim sup
n

1

n
En

[
n−1∑
k=1

Tk,`

∣∣∣τ ≥ n] . (10)

If in a policy every sample is taken and some information is transmit-
ted at every time slot at all the sensors, then for that policy PDC` =
PTC` = 1, ∀`. If transmissions happen from the sensors only in
every alternate time slots, then PTC` = 0.5, ∀`.

The objective here is to solve the following data-efficient exten-
sions of Problem 1 and Problem 2.
Problem 3.

minimize
Π

WADD(Π),

subject to FAR(Π) ≤ α, (11)
PDC`(Π) ≤ β`, for ` = 1, · · · , L,

and PTC`(Π) ≤ σ`, for ` = 1, · · · , L.

Here, 0 ≤ α, β`, σ` ≤ 1, for ` = 1, · · · , L, are given constraints.
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Problem 4.

minimize
Π

CADD(Π),

subject to FAR(Π) ≤ α, (12)
PDC`(Π) ≤ β`, for ` = 1, · · · , L,

and PTC`(Π) ≤ σ`, for ` = 1, · · · , L.

Here, 0 ≤ α, β`, σ` ≤ 1, for ` = 1, · · · , L, are given constraints.

Remark 2. If σ` = 1 ∀`, then Problem 3 and Problem 4 specializes
to problems for multi-channel systems.

We now propose the DE-Censor-Sum algorithm. In the DE-
Censor-Sum algorithm, the DE-CuSum algorithm is used at each
sensor (data-efficiency). If the DE-CuSum statistic is above a thresh-
old, then the statistic is transmitted to the fusion center (censoring).
A change is declared at the fusion center, if the sum of the trans-
mitted statistics from all the sensors is larger than another threshold
(thus detecting a change without knowing the subset of affected sen-
sors). Let d` =

D(f1,` || f0,`)∑L
k=1

D(f1,k || f0,k)
, and letWn,` be the DE-CuSum

statistic at sensor `.

Algorithm 2 (DE− Censor− Sum: ΠW({µ`}, {h`}, D,A)).
Start with W0,` = 0 ∀`. Fix µ` > 0, h` ≥ 0, D ≥ 0 and
A ≥ 0. For n ≥ 0 use the following control:

1. Use the policy ΨW(∞, µ`, h`) at sensor `
2. Transmit Yn,` = Wn,` if Wn,` > d`D

3. Stop at
τDE-Censor-Sum = inf{n ≥ 1 :

L∑
`=1

Yn,` > A}.

In the DE-Censor-Sum algorithm, the parameters µ` and h` are
chosen to control the PDC` at each sensor (see approximation (8)).
Choosing a large value for the thresholds D and A leads to fewer
transmissions (lower PTC`) and smaller FAR, respectively.

With D = 0 and h` = 0, ∀`, the DE-CuSum algorithm at each
sensor reduces to the CuSum algorithm, and Yn,` = Wn,` ∀n, `.
In this case, the DE-Censor-Sum algorithm reduces to the Nsum
algorithm proposed in [19] (also see [20]). Note that for the Nsum
algorithm, PDC` = PTC` = 1 ∀`.

We now prove the asymptotic optimality of the DE-Censor-Sum
algorithm. Let CADDκ and WADDκ be the CADD and WADD
evaluated with respect to the probability measure under which the
subset κ is affected at the change point.

Theorem 3.1. For any {µ`}, {h`} and D, setting

A = Aα = | logα|+ (L− 1 + o(1)) log | logα|

ensures that FAR(ΠW) ≤ α(1+o(1)) as α→ 0. There exists {µ∗`},
{h∗`} and D∗ such that

PDC`
(
ΠW({µ∗`}, {h∗`}, D,A)

)
≤ β`, ∀`, ∀D,A,

PTC`
(
ΠW({µ`}, {h`}, D∗, A)

)
≤ σ`, ∀`, ∀{µ`}, {h`}, A.

(13)

Finally if A = Aα and h` < ∞ ∀`, then for each fixed {µ`}, {h`}
and D, and for each possible subset κ, as α→ 0,

CADDκ(ΠW) ∼WADDκ(ΠW) ∼ | logα|∑m
i=1 D(f1,ki || f0,ki)

.

Remark 3. Since, the right hand side is the best possible asymptotic
delay for an FAR constraint of α [18], the DE− Censor− Sum al-
gorithm is asymptotically optimal for both Problem 3 and Problem 4,
for each fixed {β`}, {σ`}, as α → 0. Also, since the algorithm is
asymptotically optimal for each fixed {σ`}, it is also asymptotically
optimal for the multi-channel setting (σ` = 1 ∀`).

4 Numerical results
We now compare the performance of the DE-Censor-Sum algorithm
with the fractional sampling scheme for L = 10, f0,` = N (0, 1),
f1,` = N (0.5, 1), and for the PDC and PTC constraints of β` =
σ` = 0.5 ∀`. We consider two different post-change scenarios: m =
2 and m = 6. Recall that m is the number of sensors affected by the
change at the change point. We restrict our numerical study to the
comparison of the CADD performance. Similar comparison can be
obtained for the WADD as well.

In the fractional sampling scheme, the CuSum algorithm is used
at each sensor, and samples are skipped based on the outcome of a
sequence of fair coin tosses, independent of the observation process.
If an observation is taken at a sensor, the CuSum statistic is trans-
mitted to the fusion center. Thus, achieving the constraints on the
PDC and PTC. At the fusion center a change is declared the first
time the sum of the CuSum statistics from all the sensors crosses
a threshold. At the fusion center, in the absence of any transmis-
sion from a sensor, its CuSum statistics from the last transmission is
used to compute the sum. For the DE-Censor-Sum algorithm, we set
D = 0, {h` = h = 10} ∀`, and use the approximation (8) to select
µ`. This ensures that the PDC and PTC constraints are satisfied for
the DE-Censor-Sum algorithm. We also compare these two schemes
with the Nsum algorithm of [19] which as discussed in the previous
section has PDC` = PTC` = 1, ∀`. The comparison is plotted in
Fig. 2.
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Fig. 2: Comparison of the CADD performances of the DE-Censor-Sum
algorithm, the Nsum algorithm, and the fractional sampling scheme. Param-
eters used are L = 10, f0 ∼ N (0, 1), f1 ∼ N (0.5, 1), with PDC and
PTC constraints of 0.5. m is the number of affected sensors post-change.

The figure shows that the DE-Censor-Sum algorithm provides a
significant gain in performance as compared to the approach of frac-
tional sampling. Also, when m = 6, even after dropping 50% of
the samples at each sensor (and hence also transmitting only 50%
of the time) there is negligible loss in performance, as compared to
sensing and transmitting all the time (i.e., using Nsum). For m = 2
the figure shows that there is in fact a gain in performance by ‘sleep-
ing’ 50% of the time. This is consistent with the observation in [20],
where it was observed that censoring suppresses the noise from sen-
sors not affected by change, and hence provides better false alarm-
delay trade-off.
5 Conclusions
In this paper we studied data-efficient quickest change detection in
multi-channel and distributed systems where the subset of sensors af-
fected by the change is unknown to the decision maker. We proposed
minimax formulations for the problem and proposed a data-efficient
algorithm called the DE-Censor-Sum algorithm. We showed that
the algorithm is asymptotically optimal for the proposed formula-
tions, and performs significantly better than the approach of frac-
tional sampling, where the constraints on the cost of data is met by
skipping samples and transmitting randomly.
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