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Campus Valrose, 06108 Nice - cedex 02, FRANCE
Email: {Silvia.Paris, Raja.Fazliza, David.Mary, Andre.Ferrari}@unice.fr

ABSTRACT

We propose a method aimed at detecting weak, sparse signals in
highly noisy three-dimensional (3D) data. 3D data sets usually com-
bine two spatial directions x and y (e.g. image or video frame di-
mensions) with an additional direction λ (e.g. temporal, spectral or
energy dimension). Such data most often suffer from information
leakage caused by the acquisition system’s point spread functions,
which may be different and variable in the three dimensions. The
proposed test is based on dedicated 3D dictionaries, and exploits
both the sparsity of the data along the λ direction and the information
spread in the three dimensions. Numerical results are shown in the
context of astrophysical hyperspectral data, for which the proposed
3D model substantially improves over 1D detection approaches.

Index Terms— Detection, sparse, GLR, hyperspectral, dictio-
nary learning.

1. INTRODUCTION AND PREVIOUS WORKS

An increasing number of modern applications exploits multidimen-
sional data. For instance, hyperspectral data have been successfully
used in different domains such as bio-medicine [1], astrophysics [2]
and defense [3], thanks to their rich informative content (an entire
spectral signature is available for each pixel of the image).

Multidimensional data sets often possess however intrinsic char-
acteristics that lead to processing difficulties. First, the large data
size: for example, hyperspectral images made up of hundreds spec-
tral bands require increasing storage capacities and fast processing
algorithms. Second, the poor signal-to-noise ratio (SNR): splitting
the information over three dimensions and increasing the sampling
resolution often leads to relatively stronger noise levels in the voxel
elements. In addition, the features of interest may be intrinsically
weak: examples are found in the detection of covert communica-
tions or in compressive sensing [4, 5]; another example is provided
by the astrophysical data considered in Sec.4. In such cases, it may
be extremely difficult to detect the presence of information, because
it is both rare and weak. This is the situation considered in this paper.

Depending on the detection target, the information of interest
may take the form of a natural or a manmade signal. Most often,
signals can be compactly modeled as sparse using appropriate dic-
tionaries of elementary features called atoms. In sparse synthesis
models, the signal information is approximated as a linear combina-
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tion of few atoms, with a vector of coefficients having few non-zero
entries [6–8]. We will follow a sparse approach here.

Sparse estimation and sparse detection techniques share a com-
mon goal: finding low dimension subspaces in which the useful in-
formation is located. The literature in sparse detection is however far
less abundant than that in sparse estimation. The next lines propose
a survey of earlier works in the field.

Recently, the works [4, 5, 9–15] have proposed detection tests
exploiting sparsity, mostly in the compressive sensing framework.
In [9,10], a best k-term approximation of the parameter vector is in-
jected in the Likelihood Ratio. The same idea appears in [11], where
a Maximum A Posteriori (MAP) estimate is used as a solution of
the Basis Pursuit DeNoising (BPDN, or Lasso [16–18]). In [12],
the sensing matrix is designed to correspond to the subspace of the
sparse signals, which is assumed to be known. The works presented
in [15] optimize Parseval frames for signal detection using the Gen-
eralized Likelihood Ratio (GLR) test [19]. In [14], sparse recovery is
investigated for multiple testing. Following the seminal works [18],
Fuchs describes in [13] the connection between the support detec-
tion performed by the BPDN and the GLR. In [4], the test called
Higher Criticism (HC) is set in order to detect faint sparse vector
means of multivariate normal vectors, and the Max test, based on
a Bonferroni-type correction, is considered in [5]. Both tests are
shown to be powerful in the case of very sparse and weak signals.

In [20–22], we introduced two detection tests based on MAP
estimates, which were shown to be more powerful for sparse signals
than classical methods, such as the unconstrained GLR test [19]. A
connection was found with earlier works of Fan [23] and Basu [24],
and with the Max test described in [5].

The sparse detection problem we consider here is that of detect-
ing, in highly noisy 3D data (data-cubes), a few spatially localized
and weak spectral features, whose energy furthermore spreads in the
three dimensions, say x, y and λ. Here, spatial (resp. spectral) will
refer to the x, y (resp. λ) dimensions, so that the proposed method
can be generically applied regardless of the physical nature of x, y
and λ. We will accordingly separate the 3D point spread function
(PSF) into a spatial (SSF) and a wavelength spread function (WSF).

The tests of [20–22] were applied to 3D (hyperspectral) data and
relied on a dedicated one-dimensional (1D) redundant spectral dic-
tionary. As an illustration of the proposed method, we show here that
one can improve on the results of [20–22] by using spatio-spectral
dictionaries. These dictionaries exploit both the sparsity of the data
along the λ dimension and the information leakage caused by the 3D
PSF over several voxels. We consider that the spectral pattern to be
detected is not known, but that we dispose of a set of training sig-
nals that represents well the variety of features to be detected. The
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spectral dictionary used in the proposed test is made of atoms that
are learned using dictionary learning techniques [25,26], and further
spread by the SSF and WSF, leading to 3D atoms. Note that we do
not attempt to first deconvolve the data, and then detect. The reason
is that in such a two-step approach, the dependence of deconvolu-
tion on a regularisation term would mess-up the data distribution. In
addition, regularized deconvolution somewhat performs a detection,
but without rigorously defining the realized detection test (nor con-
trolling its size and power). In contrast, our approach is one-shot: the
sparsity-based test essentially performs information re-concentration
to improve detection (quite in the spirit of matched filtering princi-
ples), while keeping the statistical description of the data accurate.

To our knowledge, few related detection approaches exist.
Among these, [2] proposes a detection/reconstruction method for
low flux sources using a wavelet-based spatio-spectral dictionary,
along with a multi-scale variance stabilization transform. In contrast
to our approach, the dictionary of [2] is generic, and does not ac-
count for the instrumental spreading functions. We also note the use
of (one-dimensional) specific spectral dictionaries in [27, 28]. The
first paper considers the case of Poisson noise with a regularization
term favouring group sparsity, and the second paper a dictionary
of Gaussian lines in conjunction with a Bayesian version of the
support-vector machine-learning technique [29].

In the following, we first introduce the considered detection ap-
proach for a 1D model in Sec.2. The 3D detection test is presented
in Sec.3. Numerical results on astrophysical hyperspectral data are
shown in Sec.4.

2. 1D SPECTRAL MODEL

We start by assuming a one-dimensional model where the columns
of the data-cube along the λ dimension are considered indepen-
dently:

H0 : s = ε, H1 : s = HRα+ ε, (1)

where s ∈ RΛ is a spectral column at spatial coordinates (x, y), ε ∼
N (0,Σ) is the corresponding Gaussian noise vector, with known
(or estimated) diagonal covariance matrix Σ = diag[σ2

1 . . . σ
2
Λ], H

(Λ×Λ) denotes the composition matrix by the WSF (it is a convo-
lution if the WSF is spectrally invariant), and R = [r1 . . . rL] is a
(Λ×L) redundant dictionary with L ≥ Λ. The question of the de-
sign ofR will be addressed in Sec.3.2. α ∈ RL represents a vector
of unknown parameters. This model can be rewritten as

H1 : Σ−
1
2 s = Σ−

1
2HRα+w, (2)

where Σ−
1
2HR = DΣH appears as an equivalent dictionary, and

w ∼ N (0, I). Noting z = Σ−
1
2 s, D = DΣHN

−1
DΣH

and
θ = NDΣHα, with NDΣH the diagonal matrix composed of the
norms of the columns ofDΣH , we obtain

H1 : z = Dθ +w. (3)

The approach above acts in the weighted (by Σ−
1
2 ) data domain.

This normalization simplifies the setting and interpretation of the de-
tection tests. A test compares a statistic T (z) to a threshold γ under
the two hypotheses of the model (T (z)≷H1

H0
γ). The probability of

false alarm is PFA = Pr(T (z) > γ | H0).
A reference test for model (3) is the GLR test [19], whose test

statistic arises from the maximum of the ratio of the likelihoods un-
der the two model hypotheses. The test involves the Maximum Like-
lihood (ML) estimate of θ underH1:

GLR :
max
θ

p (z | θ)

p (z | 0)

H1

≷
H0

γ. (4)

The ML estimate of θ is computed as

θ̂ML = arg max
θ

p (z | θ) = arg min
θ

1

2
‖z −Dθ‖22 . (5)

SinceD is (Λ×L) with L > Λ, θ̂ML achievesDθ̂ML = z, and it
is easy to see that the (unconstrained) GLR test (4) reduces to

GLR : TGLR(z) = ‖z‖22
H1

≷
H0

ξ, (6)

with ξ = 2 ln γ. The GLR test behaves as an energy detector, with-
out taking any advantage from the use of the redundant dictionary.

An appropriate test for sparse data is the Max test [5], for which
we propose a simple alternative formulation as a constrained GLR
test. Let us consider the following model:

H1 : s = HRα+ ε, ε ∼ N (0,Σ) , ‖α‖0 = 1, (7)

which in the weighted domain leads to

H1 : z = Dθ +w, w ∼ N (0, I) , ‖θ‖0 = 1. (8)

In this new model, the signal component of the whitened data vector
z is obtained as one of theD columns, selected and weighted by the
sole non-zero entry of θ. We thus have

H1 : z = diθi +w, (9)
with i and θi unknown.

According to model (9), we define the 1-sparse 1D GLR test:

GLR
(1D)

1s :

max
j, θj

p (z | dj , θj)

p (z | 0)

H1

≷
H0

γ1s. (10)

The computation of the T
(1D)

GLR1s test statistic gives

T
(1D)

GLR1s (z) = min
j, θj
− zTdjθj +

1

2
θ2
jd

T
j dj . (11)

For dj fixed, the ML estimate of θj is θ̂jML = dTj z. Replacing
this expression in (11) we have

T
(1D)

GLR1s (z) = min
j
− 1

2

(
dTj z

)2

= max
j

1

2

∥∥∥dTj z∥∥∥2

2
. (12)

This is equivalent to maximise
∣∣dTj z∣∣ over j, which leads to

GLR
(1D)

1s : T
(1D)

GLR1s (z) = max
j

∣∣∣dTj z∣∣∣ H1

≷
H0

ξ1s, (13)

with ξ1s = 2 ln γ1s. This test is equivalent to the Max test [5]. The
GLR (4) and the GLR

(1D)

1s (13) tests for a 1D model are numeri-
cally compared in Sec.4, where it is shown that these methods are of
insufficient power for the detection of very faint and highly sparse
signals. Hence, next section focuses on a more accurate data model
that takes into account the information smear caused not only by the
WSF but also by the SSF.

3. 3D SPATIO-SPECTRAL MODEL

3.1. Model

The spread of information in the three dimensions can be represented
by the composition of the signal feature with both the WSF and the
SSF. For the simplicity of exposition we consider that the SSF is
spectrally invariant, but this is not necessary. Model (1) accounts
only for the WSF, through the use ofH: the spectral content of each
1D atom ri, i = 1, . . . , L of the R dictionary is spread by H in
the λ direction. However, at every single wavelength λ, the SSF also
dilutes spatially the information over a number of (Nx×Ny) adjacent
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columns. Thus, to each spectral column s(x, y) with x = 1, . . . , X
and y = 1, . . . , Y , is associated a data sub-cube of dimension (Nx×
Ny×Λ) where the energy is smeared because of the SSF.

We now explicit this model in vector form. All the (Nx×Ny)
Λ-dimensional spectra in each such data sub-cube are stacked one
on top of the other to form a NxNyΛ column vector sV . This leads
to the following expression:

H1 : sV (x, y) = F (x, y)HRα+ εV , (14)

where sV and εV ∈ RNxNyΛ, εV ∼ N (0,ΣV (x, y)) is a Gaus-
sian noise vector characterized by a (NxNyΛ×NxNyΛ) diagonal
covariance matrix ΣV , in which the diagonal is the vectorized form
of the associated sub-cube containing the noise variances of each
voxel. H ,R, andα are the same as in model (7) and F (x, y) repre-
sents the (NxNyΛ×Λ) matrix composition by the SSF. If we denote
by

f =


f11 · · · f1Ny

f21 · · · f2Ny

...
...

fNx1 · · · fNxNy

 (15)

the array of the SSF coefficients at position (x, y) (that we first as-
sume for simplicity invariant in the λ dimension), and by

φ = vecf = [f11 . . . fNx1, . . . , f1Ny . . . fNxNy ]T (16)

its vector form, then F = [f11IΛ . . . fNxNyIΛ]T = φ ⊗ IΛ,
where ⊗ denotes the Kronecker product and IΛ the Λ-dimensional
Identity matrix. Note that when the SSF is not spectrally invariant,F
should be replaced by F = [diag(f11), . . . , diag(fNxNy

)]T , where
f ij = [fij(λ1), . . . , fij(λΛ)] with i = 1, . . . , Nx, j = 1, . . . , Ny .

According to (14), in the weighted data domain we obtain for
each spectral column s(x, y) the following model for the associated
vectorized data-cube sV :

H1 : Σ
− 1

2
V sV = Σ

− 1
2

V FHRα+wV , ‖α‖0 = 1, (17)

where the dependence on (x, y) of ΣV and F is implicit. Simi-

larly to Sec.2, we refer to Σ
− 1

2
V FHR = DΣFH as an equivalent

dictionary and wV ∼ N
(
0, INxNyΛ

)
. Noting zV = Σ

− 1
2

V sV ,
DV = DΣFHN

−1
DΣFH

and θ = NDΣFHα, with NDΣFH the
diagonal matrix composed of the norms of the columns of DΣFH ,
(17) leads to the model

H1 : zV = DV θ +wV , ‖θ‖0 = 1, (18)

which corresponds to the expression of model (8), with the crucial
difference that this time both the WSF and SSF are taken into ac-
count inDV .

The constrained GLR test for (18) gives

GLR
(3D)

1s : T
(3D)

GLR1s (zV ) = max
j

∣∣∣dV Tj zV ∣∣∣ H1

≷
H0

ξ1s, (19)

where ξ1s = 2 ln γ1s. For (13) and (19), the threshold ξ1s controlling
the PFA is computed numerically (see [20], Sec.5).

3.2. Design strategies forR

There are several ways to choose R. Of course, this dictionary can
be taken as a generic one (for instance wavelets). However, if some
atoms of such dictionary are known not to well represent the data to
be detected, they should be removed, as they will only increase the
PFA. In addition, when a representative data set of the signals under

H1 is available, it may be more efficient to design a specific dictio-
nary. In such cases, R is often simply taken as the mean or the first
singular vector obtained by a SVD of the data set [30], or it can be
optimized using now classical sparse dictionary learning techniques,
for instance K-SVD [25]. Another set of approaches called minimax
seeks a dictionary of reduced dimension, which maximizes the worst
probability of detection underH1 [26, 31].

Note an important issue in the case where a spectral library is
available. Assume this (possibly very large) library L is so accurate
that the signal under H1 can be considered to belong to L. In this
case, it may be not only computationally prohibitive (see Sec.4), but
also suboptimal (w.r.t. detection power) to implement a test of the
form (19) withR = L (i.e the concatenation of all possible alterna-
tives). This is because the PFA may increase wildly with the number
of alternatives [26]. Hence, dictionaries with reduced dimensions
such as those cited above are very useful.

As a final remark, we comment on the one-sparse hypothesis
made in (7) and (17). If the signals under H1 are sparsely decom-
posed in R using a few atoms with one main salient feature, then
mainly this feature will be detectable in highly noisy data. On the
other hand, ifR is sufficiently well designed/large and thus contains
(up to an amplitude factor) an atom equal to the signal underH1, we
can also consider that the signals are one-sparse inR.

Next section compares the 1D (13) and 3D (19) one-sparse GLR
tests for the K-SVD [25] and the minimax approaches of [26].

4. ILLUSTRATION ON HYPERSPECTRAL DATA

The proposed detection strategies are illustrated in the context of the
astrophysical hyperspectral data of the ESO’s Multi Unit Spectro-
scopic Explorer (MUSE) instrument [8]. MUSE will deliver data-
cubes composed of X×Y = 300×300 spectra, sampled at approx-
imately Λ = 3600 wavelengths of the visible spectrum.

One of the major challenges of this instrument concerns the de-
tection of very distant galaxies. Those galaxies present spectra com-
posed by a sole, faint and narrow line, known as Lyman-alpha line
(Ly-α). Fig.1 reports examples of Ly-α spectra (blue, magenta and
green) and the corresponding data (grey) in the MUSE data-cube for
one of them (see also Fig.4). The highly noisy character of these
data is striking: the lines are totally buried in noise (the SNR of the
spectra is: SNR= 10 log10

‖FHRα‖22
Tr{Σ} ≈ −30dB).

The possible shapes of the signals underH1 can, in this case, be
accurately simulated using astrophysical models: we dispose of a li-
brary of L ≈ 104 line profiles (100 of which are shown on Fig.2(a)),
which extend on aboutNλ = 100 spectral channels. The location of
the lines is however arbitrary and unknown, because it depends on
the distance of the source (Doppler effect). Using the full library in
the tests (13) and (19) entails performing L× Λ×X × Y ×Nλ ≈
3×1014 multiplications and additions. If we assume 3 · 109 oper-
ations/sec, this represents 6 months of computation time for the 3D
test. Our approach to design R is thus as follows. We optimize
three dictionaries (SVD, K-SVD with 7 atoms and minimax [26])
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Fig. 1. Typical spectra under H1 and corresponding data for (16, 7).
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of reduced dimensions (resp. Λ×1, Λ×7 and Λ×1) on the whole
set of lines centered at a fixed wavelength. The resulting SVD and
minimax atoms are shown in Fig.2(b). Then, we generate translation
invariant versions of these dictionaries by shifting the corresponding
atoms at all possible wavelengths, which yields RSVD, RKSVD7 and
Rminimax.

MUSE is characterized by a 3D PSF that can be separated into
two distinct functions: a WSF, which spreads over 7 spectral ele-
ments, and a SSF, which covers (13×13) pixels in the spatial domain.
Both the WSF and the SSF of the instrument slightly vary with wave-
length. In this work we consider a constant approximation, obtained
by computing the mean over all wavelengths. The combination of
the three dictionaries above with these spread functions are used in
(7)-(13) and (17)-(19). An example of atom obtained in the 3D case
is shown in Fig.3.
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Fig. 2. Examples of spectral lines and trained atoms.
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Fig. 3. Example of 3D atom: (a) SVD atom (b) Left: corresponding 3D atom
after composition by the SSF and the WSF. Right: a cut of the 3D atom.

We compare the detection tests on a small MUSE data-cube1 of
size X×Y = 26×28 with Λ = 3600. Fig.4(a) illustrates the noise-
less reference scene (arbitrary units), which contains three spatially
localized Ly-α sources, highlighted by white circles. These sources
appear spread because of the SSF. The spectra associated to the blue,
magenta and green-crossed pixels are those shown in Fig.1.

We have run the detection tests at a same PFA = 10−3 for each
spectral pixel. Due to slight variations of the whitening matrix Σ−

1
2

from one spectrum to another, and to possible estimation errors of
the background and of the covariance matrices, we refer to this PFA

as an indicative mean value for all the spectra of the data-cube. As
visible in Fig.4 this estimated PFA is fairly accurate.

Fig.4(b) and Fig.4(c) report the 1D model-based tests’ out-
comes, respectively for the unconstrained GLR test (6) and the
GLR

(1D)

1s test (13), using RKSVD7 . In these figures, the values of the
test statistics above ξ(PFA) are shown in color: in the black pixels,

1Note that, as MUSE is still under construction, we have used a data set
specifically simulated and provided by the MUSE consortium (the first real
hyperspectral data-cubes are expected in the course of the year 2013).

Fig. 4. Compared detection performances of the unconstrained GLR (6)
and the GLR1s ((13) and (19)) on a simulated MUSE data sub-cube. (a):
Reference map (mean over all wavelengths). (b,c): GLR (6) and GLR1s (13)
using RKSVD7 . (d-f): 3D GLR1s (19) using Rminimax, RSVD and RKSVD7 .

no detection is found at PFA = 10−3. As clearly visible, at this PFA,
none of the three objects in the scene is detected (similar null results
are obtained with 1D tests usingRSVD andRminimax).

The detection results obtained with the 3D model-based GLR
(3D)

1s
test are shown in Fig.4(d) using Rminimax, in Fig.4(e) using RSVD,
and in Fig.4(f) usingRKSVD7 , at PFA = 10−3. This time, two among
the three Ly-α objects in the scene are clearly detected. We note
that some pixels (in the top right corner of the scene) lead to a slight
increase in false alarm, probably because of estimation errors of the
background. The minimax and (K)-SVD approaches yield essen-
tially comparable results (with slightly worse performances for the
minimax approach on these three sources). The third source (bottom
right corner of the scene) remains undetected: the features detected
around pixel (x, y) = (22, 22) do actually not correspond to real
spectral features (the two other do). We believe that this kind of
signal illustrates a detection limit in this application.

5. CONCLUSION
In the context of highly noisy 3D data, the proposed method allies
dictionary learning techniques, sparse models and spread functions
to concentrate information prior to detection. The method is cur-
rently generalized to the case where sources are spatially structured
(instead of punctual).

In the considered application, this 3D method clearly improves
on a 1D approach. We believe there is not much room for ameliora-
tion, because of the signals’ unknown location in λ and (x, y). To
decrease the PFA, while keeping the power essentially constant, pos-
sible optimizations are to put cosmological constraints on the trans-
lations of the sources in λ, and to shift the learned atoms at multiples
of the sampling channels (instead of all channels). In addition, all
tests could use the true (instead of approximated) SSF and WSF, to
the detriment of a considerable increase of the computational com-
plexity.
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