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ABSTRACT

Most statistical inference methods for array processing assume an
array of size N fixed and a number of snapshots T large. In ad-
dition, many works are based on the assumption of a white noise
model. These two assumptions are increasingly less realistic in mod-
ern systems where N and T are usually both large, and where the
noise data can be correlated either across successive observations or
across the sensor antennas. In this paper an approach to handle this
kind of scenario is presented. New algorithms for source number
estimation, power estimation, and localization by a sensor array un-
der noise with unknown correlation model are proposed. The results
fundamentally rely on recent advances in small rank perturbations of
large dimensional random matrices.

Index Terms— Random matrix theory, correlated noise, source
detection, power estimation, MUSIC algorithm.

1. INTRODUCTION

Consider a sensor network with N sensors observing T successive
snapshots of K source signals. The received signals are impaired by
temporally (or spatially) correlated noise, i.e., there is a dependency
between the noise data across successive observations (or across the
sensors). Such scenarios are usually met in e.g., radar systems. The
objective of the sensor array is to determine the number of transmit-
ting sources and to provide consistent estimators of their respective
powers and angles of arrival using the T observations only.

In modern sensor networks, scenarios with large dimensional
systems and fast dynamics where T is limited and is generally of the
same order of magnitude as N are usually considered. Therefore,
it is natural to assume the asymptotic regime denoted by T → ∞,
where T converges to infinity while N/T → c > 0. The number of
transmitting sources K is fixed as T →∞.

In this paper, apart from N and T , all parameters including K
are unknown. In particular, the noise spatial or temporal correlations
are unknown. The angle taken in this article to perform statistical
inference on the signals is based on the spectral analysis of the em-
pirical covariance matrix of the received signals.

The problem of detecting the number of sources has attracted
a lot of attention. The historically used nonparametric estimators
are the Akaike information criterion (AIC) [1] and the minimum de-
scription length metric (MDL) [2]. When N → ∞ and T → ∞,
an improved MDL estimator of K was recently proposed in [3]. Re-
garding power estimation, an (N,T )-consistent technique based on
random matrix theory (RMT) was provided in [4]. As for angles of
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arrival estimation, the MUSIC approaches are among the most popu-
lar techniques [5]. An improved RMT-based MUSIC algorithm was
developed in [6].

The above detection/estimation techniques were elaborated for
scenarios with white noise. When the noise is correlated and un-
known, it is often assumed that the observer has access to an inde-
pendent pure noise sequence. In this case, the noise covariance ma-
trix is estimated and is used to whiten the received signal covariance
matrix [7]. However, the existing detection/estimation techniques
fail without the assumption that a pure noise sequence is available.
In this paper it is assumed that such a sequence is not available. This
is in particular more realistic in environments with fast dynamics.

Using recent results of RMT with finite rank perturbations [8],
we elaborate new algorithms for the detection of the number of emit-
ting sources and their power estimation provided the signal powers
are large enough. Moreover, a MUSIC-based angle of arrival estima-
tor is proposed which is an extension of the algorithm of [9] for the
case of correlated noise. Our results are generalized in [10] where
many system model constraints are relaxed, with proofs provided in
[10] and [8].

The remainder of the article is organized as follows. In Sec-
tion 2, we provide some background on RMT and introduce the sys-
tem model. The detection, power estimation, and localization are
presented in Section 3. Simulation results are given in Section 4.

2. BACKGROUND ON RMT AND SYSTEM MODEL

2.1. Background

We first introduce a result on the limiting eigenvalue distribution of
a classical RMT model [11], [12].

Theorem 1. Let VT = WTR
1/2
T be a matrix product where

WT has independent and identically distributed (i.i.d.) entries
with zero mean, variance 1/T and finite fourth order moment,
and RT is a deterministic nonnegative matrix with eigenvalue
distribution νT which converges to ν as T → ∞. Let ΣT =
{σ2

i,T }Ti=1 be the set of eigenvalues of RT with Hausdorff distance
d (ΣT , supp(ν)) −−−−→

T→∞
0 where supp(ν) is the support of ν. Let

λ1,T . . . , λN,T be the eigenvalues of VTV H
T . Then, as T → ∞,

N/T → c > 0, the eigenvalue distribution of VTV H
T converges to

µ whose Stieltjes transform m(z), z ∈ C+, is given by the unique
solution in C+ of the equation

m =

(
−z +

∫
t

1 + cmt
ν(dt)

)−1

where C+ = {z ∈ C : =z > 0}. Moreover, for any interval
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[x1, x2] ⊂ R− supp(µ),

]{i : λi,T ∈ [x1, x2]} = 0 almost surely (a.s.) for all large T.

When ν = δ1, the limiting spectral measure of VTV H
T is the well

known Marčenko–Pastur (MP) law [13] with parameter c.
Consider now the sum of matrices YT = AT +VT of sizeN×T

with VT defined as in Theorem 1 and AT with non-zero singular
values ω1 ≥ · · · ≥ ωK > 0 of rank K fixed. The matrix AT can be
viewed as a small rank perturbation of VT . This model belongs to the
literature of the so-called “spiked” models. Consider the empirical
eigenvalue distribution of the matrix YTY H

T with eigenvalues λ̂1 ≥
· · · ≥ λ̂N . When ν = δ1, the eigenvalue distribution of YTY H

T still
converges to the MP law [14]. However, depending on ωi and c, we
may observe up to K isolated eigenvalues on the right side of the
support of µ [15] (see Figure 1). In this paper we consider a model
of the YT type with AT modeling K source signals and VT some
colored thermal noise. The estimators presented in this paper are
based on the asymptotic behavior of the isolated eigenvalues.
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Fig. 1. Histogram of the empirical eigenvalues of (AT +WT )(AT +
WT )H and the Marčenko–Pastur law forN = 100, T = 200, AT of
rank 2 with ω2

1 = ω2
2 = 7.

2.2. System model

Consider K source signals received by an array of N sensors during
T time slots. The received signal yt ∈ CN×1 at time t is given by

yt =

K∑
k=1

√
pkaT (θk)sk,t + vt

where pk is the power of source k ordered as p1 ≥ . . . ≥ pK , θk ∈
[−π/2, π/2] is its angle of arrival (different for each k), aT (θk) ∈
CN×1 is the steering vector defined in the classical uniform linear
array model as

aT (θk) =
1√
N

[
1, e−2ıπd sin θk , . . . , e−2ıπd(N−1) sin θk

]T
with d a positive constant. The signal transmitted by source k at
time t is denoted by sk,t and the noise vector by vt. We can rewrite
the input-output relationship by concatenating T successive signal
realizations into the matrix

YT = HTP
1/2SH

T + VT (1)

where YT = [y1, . . . , yT ], HT = [aT (θ1), . . . , aT (θK)], P =

diag(p1, . . . , pK), ST = T−1/2[s∗t,k]T,Kt,k=1 with st,k random i.i.d.
with zero mean, unit variance, and finite eighth order moment, and
VT = [v1, . . . , vT ]. We assume that the noise is temporally corre-
lated, i.e., the columns of VT are not independent. Although this is
not a necessary condition for the validity of the results of this pa-
per (see [10] for a more general setting), we assume that the noise
model is a causal stationary autoregressive moving average (ARMA)
process. Each row of VT is the output of a filter with transfer func-
tion of the form p(z) =

∑∞
l=0 ψlz

−l driven by a white Gaussian
noise. Under these assumptions, VT can be written as a product
VT = WTR

1/2
T where WT = T−1/2[wn,t]

N,T
n,t=1 is a white noise

matrix with wn,t i.i.d. zero mean, unit variance, standard complex
Gaussian random variables, and RT is the Toeplitz nonnegative ma-
trix

RT =


r0 r1 . . . rT−1

r−1

. . .
. . .

...
...

. . .
. . . r1

r1−T . . . r−1 r0


with rk ,

∑
l≥0 ψl+kψ

∗
l for k ∈ Z. From [16, Lemma 6], νT , the

spectrum of RT , converges to ν whose support is a compact interval
and all the eigenvalues ofRT are asymptotically located in supp(ν).

3. SOURCE DETECTION, POWER ESTIMATION, AND
LOCALIZATION

From Theorem 1 and the discussion in Section 2.1, the spectrum of
YTY

H
T is constituted of one interval corresponding to the noise part

and possibly of some isolated eigenvalues.

In the large dimensional regime with T → ∞, N/T → c > 0,
and K fixed, for this model, we precisely have, as a corollary of
Theorem 1 and [16, Lemma 6], that the Stieltjes transform m of
the limiting eigenvalue distribution µ of VTV H

T is the solution of the
equation

m(z) =

(
−z +

∫ 1

0

S(u)

1 + cm(z)S(u)
du

)−1

(2)

where, for z ∈ C+, m(z) ∈ C+, and S(u) = |p(e2πiu)|2. The
edge of the support of µ is characterized in the following proposition
[10].

Proposition 1. Let µ be the eigenvalue distribution function with
the Stieltjes transform defined by (2) with support [a, b]. Then,

b = − 1

mb
+

∫ 1

0

S(u)

1 + cmbS(u)
du

where mb is the unique solution in (−(cmax
u
{S(u)})−1, 0) of the

equation in the variable m∫ 1

0

(
mS(u)

1 + cmS(u)

)2

du =
1

c
.

Note that the function m(z), z ∈ C+, admits an analytic con-
tinuation on (b,∞) and lim

x→b+
m(x) = mb.
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3.1. Largest eigenvalues behavior

The behavior of theK largest eigenvalues of YTY H
T is known thanks

to the recent results of [8] and given in the following proposition.

Proposition 2. Let m be defined by (2) with µ having support [a, b].
Let b and mb be defined as in Proposition 1. Define the function
g(x) = m(x)(xcm(x)+c−1) decreasing from mb(cbmb+c−1)
to zero on (b,∞). Let q ∈ N be the largest integer for which

pqmb(cbmb + c− 1) > 1

and define plim , 1/mb(cbmb + c− 1).
Let λ̂1,T ≥ · · · ≥ λ̂N,T be the eigenvalues of YTY H

T . If q = 0,
then λ̂1,T

a.s.−−−−→
T→∞

b. Otherwise, for k = 1, . . . , q, let ρk be the

unique solution in (b,∞) of the equation pkg(x) = 1. Then,

λ̂1,T
a.s.−−−−→

T→∞
ρ1, . . . , λ̂q,T

a.s.−−−−→
T→∞

ρq, and λ̂q+1,T
a.s.−−−−→

T→∞
b.

From this proposition, if q sources have their powers greater
than plim, then the corresponding q eigenvalues will be found out-
side the support of µ. Each of these eigenvalues λ̂k converges to ρk
for k = 1, . . . , q and ρk is a function of pk. Therefore, the position
of an isolated eigenvalue can be mapped to its corresponding source
power, which can thus be estimated.

3.2. Source detection

Let L be an upperbound on the number of sources.

Proposition 3. Let q be defined as in Proposition 2. Let ε > 0 and
let q̂εT be the largest integer in {0, . . . , L} for which

q̂εT = arg max
k∈{0,...,L}

{
λ̂k,T

λ̂k+1,T

> 1 + ε

}
.

Then, for ε small enough,

q̂εT − q
a.s.−−−−→

T→∞
0.

From this result we have a consistent estimator of the source
number if the source power pK > plim, i.e., if q = K.

3.3. Power estimation

In order to estimate pk for k ≤ q, we use the equation pkg(ρk) =
1 from Proposition 2 where we replace ρk and g(x) by estimates
based on λ̂k,T .

Proposition 4. In the setting of Proposition 3 with q̂T , q̂εT for
some small ε, let ĝT (x) = m̂T (x)(xcm̂T (x)+c−1) where m̂T (x)
is given by

m̂T (x) =
1

N − q̂T

N∑
n=q̂T+1

1

λ̂n,T − x
.

For k = 1, . . . , q̂T , let p̂k,T =
(
ĝT (λ̂k,T )

)−1

.

Then,
p̂k,T − pk

a.s.−−−−→
T→∞

0.

The variance of the proposed estimator can be shown to be of
order 1/T [10].

3.4. Localization

In this section we extend the method of [9] for the correlated noise
model. Let q be defined as in Proposition 2. Let ΠT,q be an orthogo-
nal projector on the column space of HT,q = [aT (θ1), . . . , aT (θq)].
As the signal subspace corresponding to the q sources is also
spanned by the vectors aT (θ1), . . . , aT (θq), θ1, . . . , θq are solu-
tions of the equation aT (θ) (IN −ΠT,q) aT (θ)H = 0. Defining
γT (θ) = aT (θ)HΠT,qaT (θ), a localization function, θ1, . . . , θq are
the arguments of the local maxima of γT (θ). We can estimate γT (θ)
from the q̂T eigenvectors of YTY H

T corresponding to the q̂T largest
eigenvalues as follows [10]

Proposition 5. Denote û1,T , . . . , ûq̂T ,T the eigenvectors of YTY H
T

belonging respectively to λ̂1,T , . . . , λ̂q̂T ,T . For θ ∈ [−π/2, π/2],
let

γ̂T (θ) =

q̂T∑
k=1

ζT (λ̂k,T )aT (θ)Hûk,T û
H
k,T aT (θ)

where ζT (x) =
(xm̂T (x)(cm̂T (x)−(1−c) 1

x ))
′

xm̂T (x)2(cm̂T (x)−(1−c) 1
x )

.

Then,
γT (θ)− γ̂T (θ)

a.s.−−−−→
T→∞

0.

4. SIMULATION RESULTS

Simulation results are obtained for a single source located at θ =
10◦. The signals st,k are drawn from a QPSK constellation. The
noise is assumed to be an autoregressive (AR) process of order 1 and
parameter a ∈ [0, 1). The matrix RT is then a Toeplitz matrix with
coefficients [RT ]k,l = a|k−l|. In these simulations, we compare two
cases. For the first case, we assume to have a perfect knowledge
of RT . Therefore, we first whiten the received covariance matrix
before applying the proposed algorithm. This will give the theoret-
ical performance upperbound. For the second case, we apply the
proposed method directly on the received covariance matrix without
knowledge of RT .

Figure 2 compares the receiver operation characteristics (ROC)
of the detector proposed in Proposition 3 for different a. These
curves are obtained by plotting the correct detection rate versus false
alarm rate and are parameterized by the detection threshold. As ex-
pected, the whitened version significantly outperforms the proposed
detector due to the perfect knowledge of RT . Good detection per-
formances are nonetheless observed for small values of a.

In Figure 3 normalized mean square errors (NMSE) of the
power estimator given in Proposition 4 are depicted for different
a. The proposed power NMSE is compared with the whitened ver-
sion. The more correlated the noise, the bigger the gap between
the NMSE of the proposed estimator and its whitened version at N
fixed. It can be shown that the gap in dB is asymptotically given
by 10log

(∫ 1

0
S(u)−1du

∫ 1

0
S(u)du

)
dB and is positive unless the

noise is white (for which S(u) is constant) [10]. We remark also
that a good performance is achievable for a quite small N .

Figure 4 illustrates the mean square errors (MSE) of the esti-
mated localization function of Proposition 5. They are compared
with the traditional MUSIC algorithm with localization function
γ̂trad,T (θ) =

∑q̂T
k=1 aT (θ)Hûk,T û

H
k,T aT (θ). The proposed lo-

calization algorithm outperforms the classical MUSIC algorithm,
particularly at high SNR, by nearly 4 dB. Similar to the power esti-
mation performance, the gap between the whitened version strongly
depends on the correlation parameter a.
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Fig. 2. ROC curves with K = 1, SNR= 7 dB, L = 5, N = 20,
T = 40, and c = 0.5.
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5. CONCLUSIONS

In this paper new (N,T )-consistent estimators for the number of
sources, their respective powers, and directions of arrival in the
presence of noise with unknown correlation have been proposed.
The simulations showed that the proposed algorithm performance
strongly depends on the noise correlation parameter. However, when
the correlation is not too high, a good performance is achievable for
a reasonable system size. In addition, we have observed that the
proposed angle of arrival scheme performs better than the traditional

MUSIC algorithm. All the proofs, as well as second order analysis,
are available in [10] with more general conditions on the model.
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