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ABSTRACT

We present an algorithm, AROFAC2, which detects the (CP-
)rank of a degree 3 tensor and calculates its factorization into
rank-one components. We provide generative conditions for
the algorithm to work and demonstrate on both synthetic and
real world data that AROFAC2 is a potentially outperform-
ing alternative to the gold standard PARAFAC over which it
has the advantages that it can intrinsically detect the true rank,
avoids spurious components, and is stable with respect to out-
liers and non-Gaussian noise.

Index Terms— Tensor Decomposition, Tensor Factoriza-
tion, Approximate Algebra, Simultaneous Diagonalization

1. INTRODUCTION

Polyadic decomposition of tensors into their canonical com-
ponents (= canonic polyadic resp. CP-decomposition) and de-
termining the number of those (= the rank) is a multidimen-
sional generalization of the Singular Value Decomposition
and the matrix rank, and a reoccurring task in all practical sci-
ences, appearing many times under different names; first dis-
covered by Hitchcock [1] and then re-discovered under names
such as PARAFAC [2] or CANDECOMP [3], it has been ap-
plied in many fields such as chemometrics, psychometrics,
and signal processing [4, 5, 6]. An extensive survey of many
applications can be found in [7, 8].

Considerable effort has been devoted to develop theory
and methodology for the CP-decomposition, however many
fundamental issues are still unresolved. The mathematical
theory concerning CP-decompositions of tensors which are
not matrices is only partly understood; also, while there exist
several methods to calculate the CP-decomposition of a ten-
sor [9, 10], they are extrinsical in the sense that a structure-
agnostic loss function is optimized and also highly sensitive
to outliers or non-Gaussian noise - problems which have been
heuristically attempted to cope with (e.g. [11]). Moreover,
determining the rank of a noisy tensor remains a problematic
task despite the existence of heuristics [12].

In this paper, we present AROFAC2, a method for cal-
culating the CP-decomposition of a low-rank degree 3 ten-
sor and its rank, which is based on theoretical considerations
and intrinsical calculations making use of the algebraic struc-
ture of degree 3 tensors, part of which have already surfaced
in [13]. Specifically, we show how the algebraic structure can
be used to obtain components one-by-one by alternating pro-
jections - a technique which draws inspiration from [14] - and
how to reduce determination of rank to a clustering problem.
Due to its structure-awareness, our algorithm only finds the
numerically stable components while avoiding spurious ones,
and determines the correct rank; it is also less sensitive to
outliers or noise. We demonstrate its superiority to existing
approaches on synthetic data and a chemometrics data set.

2. TENSOR FACTORIZATION AND
SIMULTANEOUS SVD

We briefly review the basic definitions of rank-one tensor de-
composition, and introduce some notation.

Notations 2.1. The set of (n1×n2×n3)-tensors of degree 3
is denoted by

Cn1×n2×n3 =

(aijk)1≤i≤n1
1≤j≤n2
1≤k≤n3

 .

For A ∈ Cn1×n2×n3 , the matrices

A1, . . . , An3
with Ak = (aijk)1≤i≤n1

1≤j≤n2

are called the 3-slices of A.

Definition 2.2. Let A ∈ Cn1×n2×n3 . Then, a decomposition

A =

r∑
i=1

ui ⊗ vi ⊗ wi with ui ∈ Cn1 , vi ∈ Cn2 , wi ∈ Cn3 ,

is called a rank r canonic polyadic decomposition (or CP-
decomposition) of A. The ui, vi, wi are called (rank-one-
)components of A. The ui are called mode-1-, the vi are
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called mode-2-, and the wi mode-3-components. The tensors
ui ⊗ vi ⊗ wi are called (rank-one-)factors.

The (CP-)rank of A, denoted by rk(A), is the smallest r
such that A has a rank r CP-decomposition.

This paper proposes an algorithmic solution for the fol-
lowing problem:

Problem 2.3. Let A ∈ Cn1×n2×n3 . Determine r = rk(A)
and a rank r CP-decomposition of A.

and for its approximate version, i.e., the case where A is
noisy but of low tensor rank, and one wants to find a CP-
decomposition of the noiseless A.

Related to that is the problem of finding a simultaneous
singular value decomposition (SVD):

Problem 2.4. Let A1, . . . , An3 ∈ Cn1×n2 . Determine a rank
r, matrices U ∈ Cn1×r, V ∈ Cn2×r and diagonal matrices
W1, . . . ,Wn3

∈ Cr×r such that

Ak = U ·Wk · V > for all 1 ≤ k ≤ n3.

In fact, Problems 2.3 and 2.4 are equivalent. We briefly
prove that and add one additional characterization which will
be important in the application:

Proposition 2.5. Let A ∈ Cn1×n2×n3 , let
A1, . . . , An3 ∈ Cn1×n2 be the 3-slices of A. Then, the fol-
lowing are equivalent:
(i) A is a tensor of rank r in the sense of Definition 2.2.
(ii) The Ai have a simultaneous SVD of rank r in the sense of
Problem 2.4.
(iii) There are rank one matrices M1, . . . ,Mr ∈ Cn1×n2 and
coefficients λij ∈ C, 1 ≤ i ≤ n3, 1 ≤ j ≤ r, such that

Ai =

r∑
j=1

λijMj for all 1 ≤ i ≤ n3.

Proof. (i)⇔(ii): There is only a notational difference which
results from writing the columns of U as ui, the columns of
V as vi, and, for i fixed and k running, the vectors formed by
the i-th diagonal entries of the Wk as wi, and the Ak as the
3-slices of A.
(i)⇔(iii): Again, the difference is only notational. Write
Mi = ui ⊗ vi and λij the i-th component of wj .

3. UNIQUENESS OF CP-DECOMPOSITION AND
LINEAR FACTORING

By the definitions above, it is not a-priori clear whether the
CP-decomposition, including terminology such as component
or factor, is well-defined, in particular whether it is unique.
The method we present in this paper exploits certain proper-
ties of tensors with low rank. The main assumption on the
tensor A to factor is the following:

Assumption 3.1. A ∈ Cn1×n2×n3 , rk(A) ≤ min(n1, n2, n3).

It is probably known or folklore that in this case the CP-
decomposition is unique, nevertheless we were not able to
retrieve an exact reference. Thus, we provide a proof instead
(for the notion of genericity, consult the appendix of [15]):

Theorem 3.2. Let A ∈ Cn1×n2×n3 be generic with rank
rk(A) = r ≤ min(n1, n2, n3), let

A =

r∑
i=1

ui ⊗ vi ⊗ wi with ui ∈ Cn1 , vi ∈ Cn2 , wi ∈ Cn3

be a CP-decomposition of A. Then any CP-decomposition of
A can be obtained by replacing the ui, vi, wi by
λiui, νivi, λ

−1
i ν−1i wi, where λi, νi ∈ C× for 1 ≤ i ≤ r.

Proof. Keep the notation from Proposition 2.5, including Ai

andMj . Due to the observation in the proof of Proposition 2.5
that (i) and (iii) differ only in notation, the statement of this
theorem is equivalent to proving that there is only one unique
way to present the Ai as

Ai =

r∑
j=1

λijMj for all 1 ≤ i ≤ n3.

with rank one matrices Mj and numbers λij , up to renumber-
ing and the obvious rescaling by replacingMj with µjMj and
λij with µ−1j Mj . Now since A is generic, the Mj are generic
rank-one matrices, and the λij are generic numbers. Thus, in-
terpreting the Ai as rows of a (n3 × n1n2)-matrix Ã, the Mj

as rows of a (r × n1n2)-matrix M , and the λij as elements
of a (n3 × r)-matrix Λ. The presentation above can be re-
formulated as Ã = ΛM. The assumption n3 ≤ r and Propo-
sition 2.5 (iii) thus imply that the Mj lie in the span of the
Ai. Now since the λij are generic, Λ is a completely generic
matrix. Thus, a different presentation of Ã would correspond
to the existence of an invertible (r × r) matrix P such that
Ã = ΛP−1M ′ with a matrix M ′ whose rows correspond to
rank-one-matrices, i.e., M ′ = PM. But a linear combination

M ′i =

r∑
i=1

pijMj

of the (n1 × n2) matrices Mj has rank one if and only if
exactly one of the pij (with i fixed) is non-zero, since r ≤
min(n1, n2). Since P is of full rank, this implies that P is
the product of a (r × r) permutation matrix with a full rank
diagonal (r×r) matrix. But this is, as stated above, equivalent
to the statement to prove.

Thus, under our assumptions components are unique up
to scaling and numbering, and factors are unique up to num-
bering.

Proposition 2.5, together with the uniqueness guarantee in
Theorem 3.2, gives the following statement:
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Proposition 3.3. Let A ∈ Cn1×n2×n3 be generic with rank
rk(A) = r ≤ n3, let A1, . . . , An3 ∈ Cn1×n2 be the 3-
slices of A. Then, up to scaling, there are r unique vectors
λ(1), . . . , λ(r) ∈ Cn3 such that

M(λ(k)) =

n3∑
i=1

λ
(k)
i Ai

has rank one. Moreover, for each k, let M(λ(k)) = uk ⊗ vk
be the (rank-one-)SVD. Then, the uk and vk are mode-1- and
mode-2-components of A, belonging to the same factor.

4. THE AROFAC2 ALGORITHM

We propose an algorithm which computes rank and CP-
decomposition of a degree 3 tensor A. It uses the routine
FindRankOne which finds mode-1- and -2-components
which we will present first as Algorithm 1. In step 1, the
tensor is first decomposed into 3-slices Ai. In step 2, an ap-
proximate representation V for their span is calculated. This
can be a PCA of the Ai, i.e., principal values or components,
or a numerical span of lower dimension (if the true rank of A
is known, the dimension should equal the rank). In step 3 a
matrix M ∈ V is randomized. This can be a random matrix
in an exact span, or a matrix which is, e.g., sampled from a
Gaussian with covariance matrix follows the estimated sam-
ple distribution of the Ai. Then steps 5 and 6, are repeated
until convergence of M is attained. Step 5 takes (a possibly
non-square) M to its third power, magnifying its largest sin-
gular value and diminishing the others. Step 6 projects M
onto V and normalizes the result. Projection can be achieved
by exact projection, or re-scaling, e.g., according to the prin-
cipal values of the Ai. After convergence is reached, M will
be approximately of rank one, and its first singular vectors,
which are obtained in step 8, will be estimates for a mode-1-
and a mode-2-component of A.

Algorithm 1 FindRankOne(A) Input: A ∈ Cn1×n2×n3

Output: One random mode-1-component u ∈ Cn1 and one
random mode-2-component v ∈ Cn2 of A in the same factor.

1: Let A1, . . . , An3
be the 3-slices of A.

2: Calculate an approximate representation V of
span〈A1, . . . , An3

〉.
3: Randomize M ∈ V.
4: repeat
5: M ←M ·M> ·M
6: M ← PV (M)
7: until M has converged
8: Calculate approximate rank-one SVD of M = u · v>
9: Return u, v

Algorithm 2 uses Algorithm 1 to obtain a full CP-
decomposition and an estimate for the rank of A. In step 1,
several candidate estimates for components of all modes are

obtained. Mode-3-components can be obtained by switching
coordinates in A (e.g., switch the first with the third). If the
mode-3-components are not relevant for the problem at hand,
e.g., in the setting of simultaneous SVD as in Problem 2.4,
this can be omitted. In steps 2 and step 3, a clustering al-
gorithm is applied to estimate the number of cluster centers
and cluster the candidate components. This can be done by
different methods, or one single algorithm. Our implemen-
tation uses the mean shift algorithm which also estimates
the number of cluster centers [16]. Since Algorithm 1 links
pairs of components, this information can then be applied in
step 4 to the estimated cluster centers in order to link pairs to
full triples (which is unnecessary if only the first two modes
are considered), e.g., by majority vote or vote weighted by
closeness of a pair to the cluster center. The corresponding
decomposition is then presented as the estimated solution in
step 5.

Algorithm 2 AROFAC2(A) Input: A ∈ Cn1×n2×n3

Output: Rank and approximate CP-decomposition of A.
1: Repeat FindRankOne(A) to find sets S1,S2,S3 of po-

tential mode-1-,-2-, and -3-components of A.
2: Use clustering algorithm to determine number r of clus-

ters for S1,S2, and S3
3: Cluster S1,S2, and S3 to obtain cluster centers
u1, . . . , ur of S1, centers v1, . . . , vr of S2 andw1, . . . , wr

of S3.
4: Use the information from FindRankOne(A) to renum-

ber the ui, vj , wk such that for each `, the components
u`, v`, w` belong to the same factor.

5: Return r as the rank of A and A =
∑r

i=1 ui ⊗ vi ⊗ wi

as its CP-decomposition.

5. EXPERIMENTS

First, we demonstrate our algorithm on simulated toy data.
The input tensor consists of 3-slices Ak =

∑r
i=1 λik ui v

>
i

compare Proposition 2.5. Each slice is generated as follows:
Exact singular vectors ui ∈ Rn1 , vi ∈ Rn2 , 1 ≤ i ≤ r are
sampled independently and uniformly from the n1-sphere and
n2-sphere, respectively. The λik are sampled independently
and uniformly from the standard normal distribution. Then,
to each matrix Ak, 1 ≤ k ≤ n3, noise is added in the form
of a (n1 × n2) matrix whose entries are independently sam-
pled from a normal distribution with mean 0 and covariance
ε ∈ R+. Figure 1(a) shows the accuracy of the estimated U
and V for n1 = 50, n2 = 60, n3 = 70, r = 10, ε = 0.1 for
PARAFAC (top row) vs AROFAC2 (bottom row). The esti-
mation quality is essentially the same, however for AROFAC2
the correct rank r = 10 has been detected automatically.

In a second numerical evaluation, we analyze the noise
robustness of the AROFAC2 algorithm. The data is generated
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Fig. 1. (a) Absolute values of the correlation coefficients
between the true and estimated components for PARAFAC
(top row) vs AROFAC2 (bottom row). The correct solution
has the same support as a permutation matrix. (b) Estimated
rank for increasing noise levels ε. True rank is r = 10.

as before, but the noise level ε is increased from ε = 0.01 to
ε = 0.6. In Figure 1(b) we see, that the correct rank r = 10
has been found for ε ≤ 0.35 and is mainly overestimated for
larger noise levels.

Finally we apply our algorithm to a publicly available
data set from chemometrics. The Dorrit fluorescence data
[17, 18] contains 27 synthetic samples of different mixtures
of four analytes (hydroquinone, tryptophan, phenylalanine
and DOPA) that were measured in a Perkin-Elmer LS50 B
fluorescence spectrometer. The measurements of emission
spectra at multiple excitation wavelengths give rise to an
excitation-emission matrix (EEM) for each sample and thus
form a degree 3 tensor which is known to obey the trilinear
model where the rank is determined by the number of fluo-
rophores [17, 18, 11]. As described in [19] this data set is
highly suited to assess the performance of different meth-
ods due to its realistic noise from the physical environment
and the availability of a priori knowledge of the underlying
components. Figure 2 shows the estimated emission and
excitation spectra for PARAFAC with 4 and 5 components
and AROFAC2 with auto-detected 5 components. We note
that the results of AROFAC2 are in excellent agreement with
the known spectra (cf. Figs. 2 and 3 in [11]) while the com-
ponents found by PARAFAC lack accuracy. In addition we
observe that the AROFAC2 loadings better fulfill the non-
negativity constraints even though they were not enforced
explicitly. Furthermore, the peak of the fifth component
around 315 nm in both excitation and emission spectra which
can be attributed to Rayleigh scatter in all samples [20, 11] is
sharper and thus in better agreement with its expected shape
when identified by AROFAC2.

6. CONCLUSION

With AROFAC2, we have presented an algorithm which can
determine the CP-decomposition and the rank of a potentially
noisy degree three tensor. We argue that due to how the
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Fig. 2. Emission (left) and excitation (right) spectra for the
Dorrit data using PARAFAC with r = 4 (top row) PARAFAC
with r = 5 (middle row) and AROFAC2 with r = 5 automat-
ically detected (bottom row).

algorithm is constructed, spurious and unstable components
in the decomposition are not found; since the convergence
criterion intrinsically enforces stability and thus informative-
ness of any found component. Our simulations demonstrate
that AROFAC2 is competitive to the state-of-the-art method
PARAFAC, but without the need to provide the true rank
in advance. Also, AROFAC2 outperforms PARAFAC on
the Dorrit data set which shows that AROFAC2 is a method
which is more stable to outliers and the influence of non-
Gaussian noise.

AROFAC2 uses the intrinsic algebraic structure of a low-
rank degree tensor in the calculations, as opposed to most
standard methods such as PARAFAC which assume a model
and try to fit it, agnostic of its inner structure. We thus argue
that algorithms exploiting this structure are to prefer when-
ever available, and the proper starting point for any method
approaching any problem with algebraic features. We em-
phasize the potential benefit from applying structural insights
to construct structure-aware methods.
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