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ABSTRACT
We introduce the concept of intra-ference in order to quantify
the degree to which the integrity of bivariate (or complex)
sources is preserved in applications based on matrix decom-
positions of bivariate data. This is achieved by examining the
pseudocovariance matrix of noncircular complex sources, and
by recognising that the pseudocovariance is intrinsically com-
plex valued. We illuminate how the existing decompositions
such as the strong uncorrelating transform (SUT) not only
decorrelate the bivariate sources from one another, but also
decorrelate and scatter the data channels within each bivari-
ate source, thus violating source integrity. Examples showing
that the intra-ference arises due to the phase ambiguity in the
existing matrix decompositions support the approach.

Index Terms— intraference, pseudocovariance, aug-
mented complex statistics, independent component analysis

1. INTRODUCTION

Many applications based on real- and complex-valued sig-
nals require matrix analysis enabled decompositions of multi-
ple observations into the simpler original components. These
original sources usually have an associated physical meaning,
and so preserving their integrity after matrix manipulations
or separation is a prerequisite for meaningful analysis. While
for most matrix decompositions for real-valued data it is suf-
ficient to ensure maximum decorrelation of the original com-
ponents, it is often overlooked that bivariate decompositions
of originals from their mixtures are not generic extensions of
the real-valued tools. Yet current approaches typically both
demix bivariate sources from one another, while at the same
time decorrelating the constituent data channels within each
separated bivariate source. In this way, not only the order
of bivariate sources is not maintained, but also their consti-
tutive data channels are not aligned. Given that the advances
in sensor technology have enabled routine recordings of bi-
variate (and complex) sources, this has increasingly become a
major problem in the processing of such signals, as for prac-
tical applications the integrity of every recovered source is

paramount.
In addition, measures of statistical independence, or at the
very least orthogonality of real sources, are routinely used to
assess the performance of matrix decompositions in compo-
nent separation, however, no such metric exists to gauge the
integrity of the recovered bivariate (or complex) sources. For
convenience, we address the problem in the complex domain,
as due to the isomorphism between C and R2, the results nat-
urally apply to bivariate real vectors. Complex statistics is
characterised by both the standard covariance function C =
E{xxH}, and the so-called pseudocovarianceP = E{xxT }.
Only their joint consideration allows for a rigorous treatment
of real-world bivariate data, which typically exhibit power im-
balance or correlation between the data channels within each
bivariate (complex) source.
Current matrix decompositions for complex sources typically
make use of Takagi’s factorisation; the classic result in [1]
has been adopted into signal processing through the work of
De Lauthawer [2] and Eriksson [3], who coined the term the
strongly uncorrelating transform (SUT). More recently, it has
been shown that SUT can be replaced by a simpler approxi-
mate uncorrelating transform (AUT) [4] for noncircular data
(strong intrinsic correlation between the real and imaginary
part of the complex signal), while an adaptive version of SUT
was proposed in [5]. However, none ensures that the integrity
- the order of the data channels within a recovered bivariate
source and their degree of correlation - will be preserved.
In this work, we introduce the concept of intra-ference, as a
statistical measure of the amount of decorrelation between the
two constituent channels within a recovered bivariate source.
This is a first and much needed step forward to preserving
source integrity, as existing techniques not only permute the
order of bivariate sources, but also scatter and decorrelate the
data channels within each source. We show that the princi-
pal source of intra-ference is the incoherent treatment of the
phase information within the pseudocovariance, which is in-
herently complex-valued. The analysis illuminates how the
error caused by intra-ference can be quantified in the context
of source separation, while a link between the pseudocovari-
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ance and the degree of intra-ference is also established and
validated through simulations.

2. BIVARIATE MATRIX DECOMPOSITIONS

Consider the following mixing/unmixing model:

Mixing: x(n) = As(n) (1)

Unmixing: y(n) = Bx(n) = BAs(n) (2)

= PDs(n) = P∆Λs(n) (3)

where x(n), s(n) and y(n) are respectively the vectors of
observed (mixed), original, and recovered bivariate signals,
mixing matrix A models linear mixing, and B ∼ A−1 is
the unmixing matrix. In the real domain, both the permuta-
tion matrix P and the scaling matrix D are trivial ambigu-
ities which can be overlooked in the analysis. In the com-
plex domain, the situation is different, as physically the Eu-
ler representation of D = ∆Λ, where the diagonal elements
diag(∆) = δii = exp(ıθi) and diag(Λ) = λii = |dii|, mod-
els the desired phase and magnitude information (and hence
the integrity of sources). In other words, from (2), the un-
mixed output

y ∝ δs =
(

δRsR − δIsI
)

+ j
(

δRsI + δIsR
)

(4)

where δ models the complex-valued scaling ambiguity. Ob-
serve that y is a poor estimate of s, since the real part yR is
composed of the real and imaginary parts of s; similar obser-
vation applies for the imaginary part yI . This problem was
highlighted in (pp. 384-385 [6] and [7]) stating that it is not
possible to solve this phase ambiguity.
Remark#1: The phase ambiguity in the matrix ∆ is the
source of intrinsic mixing within recovered bivariate sources.

3. THE INTRA-FERENCE ANALYSIS

We next introduce the intra-ference and state its properties
based on the standard small error assumption [1]. The anal-
ysis is motivated by [8], however, our work focuses on the
intra-ference in (4), rather than the interference in [8].

3.1. The Error Model
The sources of error in bivariate ICA are: (i) the imperfection
of the mixing-unmixing model in (2), (ii) mis-specification of
the statistics (assumption of real-valued pseudocovariance).
We can express these uncertainties through the error models

BA = I+Φ Ĉ = I+ ξc P̂ = P+ ξp (5)

where Φ is the “intra-ference matrix”, while ξc and ξp are the
errors in estimating the covariance and the pseudocovariance
matrices. This allows us to re-formulate the covariance and
pseudocovariance of the estimated ICs in the form

(I+Φ)Ĉ(I+ΦH) = I (I+Φ)P̂(I+ΦT ) = P̃ (6)

where P̃ denotes the pseudocovariance matrix estimated by
SUT or AUT. This yields the following approximations

I ≈ I+Φ+ΦH + ξC

ξC ≈ −(Φ+ΦH) (7)

P̃ ≈ P+ΦP+PΦT + ξP

ξ̃P ≈ −(ΦP+PΦT ) (8)

where the term ξ̃P = ξP − (P̃ −P) is related to the degree
of the intra-ference, and is used in the analysis in Section 3.3.

3.2. Definition of Intra-ference

Using the error model in (5) and assuming no permutation, we
define the intra-ference for the ith bivariate source through the
deviation of diagonal term [i, i] of BA from unity

E{Φ2[i, i]} = E{|(BA)[i, i]− 1|2} (9)

In practice, to circumvent the permutation ambiguity, sources
are sorted in a descending order of the absolute value of their
pseudocovariance (noncircularity). This is logical because
singular value decomposition sorts the independent compo-
nents in a descending order of their singular values, when
Takagi factorisation is employed.

3.3. Analysis of the Intra-ference

To derive the intra-ference Φ[i, i] from (7)-(8), consider all
ith diagonal elements of the matrices in (7)-(8), to give

εi ≈ −Ψiθi (10)




εCR[i, i]
ε̃PR[i, i]
ε̃PI [i, i]



≈−





1 1 0
PR[i, i] 0 −PI [i, i]
PI [i, i] 0 PR[i, i]









ΦR[i, i]
ΦR[i, i]
ΦI [i, i]





The vector εi can be rewritten as complex-valued

εi =
1

2
Ωǫi





εCR[i, i]
ε̃PR[i, i]
ε̃PI [i, i]



 =
1

2





2 0 0
0 1 1
0 −j ı









ξC [i, i]

ξ̃P [i, i]

ξ̃∗P [i, i]



(11)

As E{εiε
T
i } = 1

4
ΩE{ǫiǫ

H
i }ΩH , we have1

E{εiε
T
i } =





ξ2C ξC ξ̃PR ξC ξ̃PI

ξC ξ̃PR ξ̃2PR ξ̃PRξ̃PI

ξC ξ̃PI ξ̃PRξ̃PI ξ̃2PI



 (12)

which can be used to compute the covariances of interest, that
is, E{θiθ

T
i } = Ψ−1

i E{εiε
T
i }Ψ

−T
i , where

Ψ−1

i =
−1

P 2

R[i, i] + P 2

I [i, i]
×





0 PR[i, i] PI [i, i]
−(P 2

R[i, i] + P 2

I [i, i]) −PR[i, i] −PI [i, i]
0 −PI [i, i] PR[i, i]



 (13)

1For clarity, in the sequel we omit the index [i, i].
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To measure the intra-ference, only the knowledge ofE{Φ2

R[i, i]}
and E{Φ2

I [i, i]} is required (just the diagonal elements [1,1]
and [3,3] of E{θiθ

T
i }), this is achieved by

E{Φ2

R} =

[

PRξ̃PR + PI ξ̃PI

]2

[

P 2

R + P 2

I

]2
when ξC = 0 (14)

E{Φ2

I} =

[

PRξ̃PI − PI ξ̃PR

]2

[

P 2

R + P 2

I

]2
(15)

The intra-ference can now be defined as

Intraference : E{Φ2[i, i]} = E{Φ2

R[i, i]}+ E{Φ2

I [i, i]}

E{Φ2[i, i]} = E{|ξ̃P |
2}/|P [i, i]|2 (16)

This simplification for E{Φ2

R} in (14) is valid, as the mis-
specification the covariance error ξC [i, i] = 1−(

∑

N sis
∗

i )/N
can be overlooked due to the scaling ambiguity.

Remark#2: The phase ambiguity in the demixing of com-
plex sources arises due to the error in the estimation of the
pseudocovariance matrix and is not related to the errors in the
estimation of the covariance matrix.

Remark#3: The intra-ference, as defined in (16), arises
from both the mis-specification error of the pseudocovariance
of the ith independent component and the estimation error
during the demixing process.

To elaborate on the significance of Remark#1, consider a
perfect scenario where the estimated singular values of the
independent components correspond to their actual values,
that is, |P [i, i]| = |P̂ [i, i]|. Then, the error ξ̃P [i, i] can be
expressed in the Euler form as

ξ̃P [i, i] ≈
∣

∣P [i, i]
∣

∣E
{[

exp(jθi)− exp(jθ̂i)
]}

(17)

where the angle θ̂ is obtained from the (complex valued)
pseudocovariance matrix of the estimated independent com-
ponents. This allows us to simplify (16) into

E{Φ2[i, i]} ≈ E{| exp(jθi)− exp(jθ̂i)|
2} (18)

which illustrates that the intra-ference measure is invariant
to the magnitude of the pseudocovariance when |P [i, i]| =
|P̂ [i, i]|. However, in practice |P [i, i]| 6= |P̂ [i, i]| and there-
fore the expression in (16) is better suited to measure the intra-
ference.

Remark#4: For the standard SUT, θ̂i = 0 always holds.
Thus, if θi 6= 2πi, for any integer i, the SUT is uncondi-
tionally biased, since in this case the intra-ference is given by
E{Φ2[i, i]} ≈ 2[1− E{cos(θi)}] 6= 0.

4. SIMULATIONS

The analysis in (16)-(18) shows that the intraference becomes
prominent when the associated phase of a source is not an
integer of π. Therefore, in the simulations our aim was to il-
lustrate the effect of intraference on signals with nonvanishing
phase angle, a typical case in practical applications.
To that end, we controlled the degree of correlation, ρ, be-
tween the real and imaginary part of a complex-Gaussian zero
mean signal x = xR + jxI , thus giving rise to a complex-
valued pseudocovariance. This was achieved by combining
two zero mean uncorrelated variables x1 and x2 as

xR(t) = x1(t), xI(t) = ρx1(t) + x2(t)
√

1− ρ2 (19)

In this way, a full range of correlation between xR and xI

was introduced, ranging from uncorrelated (ρ = 0) to fully
correlated (ρ = 1).

The effects of intra-ference were studied comprehensively
over two case studies: (a) performance for a varying num-
ber of sources, and (b) performance under additive noise. To
ensure that the complex-valued signal is noncircular and is
statistics contains both the variance c and pseudocovariance
p = pR + jpI (where |pR| + |pI | = 1 for consistency), the
correlation coefficient ρ was calculated via the pseudocovari-
ance, as

ρ = pI/(2E{x2

1
}) (20)

since the pseudocovariance p = E{x2

R −x2

I}+2jE{xRxI}.
For rigour the variances of the real and the imaginary parts
have to be chosen in such a way so as to satisfy the constraint
p ≤ c, which has to be reflected in the powers of the real
and imaginary channel, through pR = E{x2

R − x2

I} and c =
E{x2

R + x2

I}. In our experiments, we set the covariance to
c = 1.1; then for example, if p = −0.1 + j0.9, representing
a phase angle of 0.45 radians, the following properties of the
bivariate channels follow:

E{x2

R} = E{x2

1
} = 0.5, E{x2

I} = 0.6

E{x2

2
} =

1.1− E{x2

1
}(1 + ρ2)

1− ρ2
(21)

The unit variance was not selected in the simulations, in or-
der to avoid singular cases: for instance, when the pseudoco-
variance is to p = −0.1 + j0.9. In this case, the conditions
E{x2

R} = 0.45 and E{x2

I} = 0.55 need to be satisfied so that
pR = −0.1, however, this also means that E{x2

2
} → ∞ in

(21), as ρ = 1 - clearly, E{x2

2
} → ∞ cannot be implemented.

Finally, the sources were generated from the MA model

y(n) = x(n) + 0.9x(n− 1) + 0.95x(n− 2) (22)

with real coefficients, as a complex filtering process would
unnecessarily alter the statistics of the signal x. The degree
of intra-ference presented in the simulations was taken as the
mean value, that is, 1

N

∑N

i=1
Φ2[i, i], where the Φ2[i, i] was
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calculated from (9). In the simulations, the theoretical value
of intra-ference (broken line) was obtained as a first order ap-
proximation of the actual intraference, and follows very well
the dynamics of the actual intraference.
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Fig. 1. Intraference as a function of the number of sources.

4.1. Performance analysis for a varying number of sources

In the first set of simulations, the source separation problem
was considered beyond the 2 × 2 case. Fig. 1 illustrates that
the performance of SUT was unconditionally biased, high-
lighting the problems arising from not addressing the intra-
ference. The theoretical approximation of the intra-ference
followed quite closely the actual intra-ference; the difference
between the theoretical approximation and the actual intra-
ference decreased as the number of sources increased. The
estimation of the phase angle for the ith source was calcu-
lated by taking the average of the ith column of the inverse of
the unmixing matrix; this average improved as the number of
elements (sources) within the ith column increased, leading to
a decrease in the error. The theoretical intra-ference was ap-
proximated using the small error assumption, and approached
the actual intraference as the number of sources increased.

4.2. Performance analysis in the presence of noise

Fig. 2 illustrates the robustness of the intra-ference measure
in the presence of noise, over a range of signal to noise ratios
(SNR), for white Gaussian noise, highlighting the inadequacy
of bivariate source separation when not taking into account
the phase ambiguity. The discrepancy between the theoreti-
cal approximation and the actual intra-ference, even at high
signal-to-noise ratios, can be explained by the small error as-
sumption in the theoretical approximation. The general trend
in these experiments indicates zero intra-ference, because the
variances of the real and imaginary parts of the sources were
not significantly different.

5. CONCLUSIONS

We have shown that the physical meaning of the phase error
in independent component analysis of bivariate signals cor-
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Fig. 2. Performance in terms of signal-to-noise ratio.

responds to the inadequacy of current matrix decomposition
techniques to perform a correct estimate of the pseudocovari-
ance of complex valued sources. We have shown that phase
ambiguity manifests itself in the mixing between the real and
imaginary parts of the reconstructed source. To quantify this
phenomenon, we have introduced the concept of intra-ference
between the real and imaginary parts and have proposed the-
oretical estimators of intra-ference. Simulations, under the
small error assumption, have validated the analysis, and have
highlighted the caveats in current techniques not considering
the complex-valued nature of the pseudocovariance.
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