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ABSTRACT

A simple scheme for direction of arrival (DOA) estimation of co-
herent targets in a multiple-input multiple-output (MIMO) radar is
proposed. It is based on the idea of joint transmission and recep-
tion diversity smoothing. Compared to the existing transmission di-
versity smoothing (TDS) method, the major advantage of the new
scheme is that more covariance matrices are available for averaging
to decorrelate the coherent signals, leading to a better estimation re-
sult. Moreover, it is able to identify much more coherent targets than
the TDS method when sparse arrays are used.

Index Terms— MIMO radar, DOA estimation, coherent targets,
transmission-reception diversity smoothing.

1. INTRODUCTION

Unlike the standard phased-array radar, MIMO radar employs multi-
ple transmit antennas for emitting orthogonal waveforms and multi-
ple receive antennas for receiving the echoes reflected by the targets
[1, 2, 3]. Two types of MIMO radar have been investigated: MIMO
radar with widely separated antennas [4], and those with colocated
antennas [5]. In this paper, we focus on the type with colocated an-
tennas.

Many techniques have been proposed (see [6, 7, 8, 9, 10, 11,
12] for details) for DOA estimation in MIMO radar, by assuming
that all targets are uncorrelated with each other, so that the tradi-
tional eigenspace-based algorithms, such as MUSIC [13] and ES-
PRIT [14], can be employed for multiple target localization. How-
ever, in many radar applications, the received echo signals from
different targets are considered as coherent, which implies that the
eigenspace-based methods cannot be directly used for DOA estima-
tion due to the ill conditioning problem of the covariance matrix.
Spatial smoothing technique is a classic method to decorrelate the
signals in the data covariance matrix [15, 16, 17]. The drawback with
this approach is the decrease of the array aperture and the degrees
of freedom (DOFs), resulting in lower resolution and accuracy. To
overcome the coherent-source localization problem in MIMO radar,
a preprocessing technique referred to as TDS is used to spatially
smooth the signal covariance matrix [18]. The basic idea is to form
a new covariance matrix with decorrelated signal subspace by sum-
ming the covariance matrices corresponding to the receive anten-
nas together. Unlike the traditional spatial smoothing technique, the

TDS method does not decrease the physical array aperture.
Following the TDS method, we here propose a further improved

method for dealing with multiple coherent targets. Since linearly
independent waveforms are transmitted simultaneously via multiple
antennas in a MIMO radar, we can obtain a data matrix based on a
set of virtual antennas. A Kt × Kr transmitting-receiving window
is then employed to slide over this data matrix, where Kt and Kr

represent the transmitting and receiving dimensions of the sliding
window. Due to existence of the phase-shift factor between the sub-
block data, the corresponding covariance matrices can be employed
to perform spatial smoothing for reconstructing the full-rank signal
covariance matrix. Since both transmission and reception diversity
smoothing is utilized, the proposed method has more covariance ma-
trices for the smoothing operation, and therefore, can achieve a bet-
ter estimation result than the TDS method. Moreover, the proposed
method is able to identify much more coherent targets than the TDS
method when sparse arrays are used.

This paper is organized as follows. In Section 2, the signal
model for MIMO radar is given. The proposed method is introduced
in Section 3. Simulation results are presented in Section 4 and con-
clusions drawn in Section 5.

2. SIGNAL MODEL FOR MIMO RADAR

Consider a MIMO radar system with a uniform linear array (ULA)
of M antennas for transmitting and a ULA of N antennas for receiv-
ing. Both the transmit and receive arrays are assumed to be closely
located in space so that any target located in the far-field can be seen
at the same direction by both arrays. The M transmit antennas are
used to transmit M orthogonal waveforms. It is assumed that K co-
herent targets are present in the same range cell. Consequently, the
received data of the lth snapshot at the output of the matched filters
at the receiver can be expressed as [1, 3]

x[l] =
[

x1,1[l], x2,1[l], · · · , xM,1[l], x1,2[l], x2,2[l], · · · ,

xM,2[l], · · · , x1,N [l], x2,N [l], · · · , xM,N [l]
]T

=

K
∑

k=1

ar(θk)⊗ at(θk)bk[l] + z[l]

= [ar(θ1)⊗ at(θ1), ar(θ2)⊗ at(θ2), · · · ,

ar(θK)⊗ at(θK)]b[l] + z[l] (1)
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where xm,n[l] is the received data at the nth receive antenna associ-
ated with the mth transmit antenna, [·]T denotes the transpose oper-
ation, θk is the DOA of the kth target, ⊗ stands for the Kronecker
product operator, bk[l] is the complex-valued reflection coefficient
of the kth target,

b[l] =
[

b1[l], b2[l], · · · , bK [l]
]T

, (2)

at(θk) = [1, e−j2πdt sin(θk)/λ, · · · , e−j2π(M−1)dt sin(θk)/λ]T

(3)

ar(θk) = [1, e−j2πdr sin(θk)/λ, · · · , e−j2π(N−1)dr sin(θk)/λ]T

(4)

are the transmit and receive steering vectors in direction θk, with
dt and dr, respectively, being the adjacent antenna spacing for the
transmit and receive arrays and λ denoting the wavelength, and z[l]
is the vector of noise, which is assumed to be zero-mean independent
and identically distributed complex Gaussian [19].

3. PROPOSED METHOD

3.1. Construction of Full-rank Signal Covariance Matrix

First, we form an M×N matrix Y[l] directly from x[l]. The nth col-
umn of Y[l] is the received data at the nth receive antenna associated
with the M transmit antennas, and Y[l] is then given by

Y[l] =











x1,1[l] x1,2[l] · · · x1,N [l]
x2,1[l] x2,2[l] · · · x2,N [l]

...
... · · ·

...
xM,1[l] xM,2[l] · · · xM,N [l]











= AtΞAT
r + Z[l] (5)

where

At = [at(θ1), at(θ2), · · · , at(θK)], (6)

Ar = [ar(θ1), ar(θ2), · · · , ar(θK)], (7)

Ξ = diag
[

b1[l], b2[l], · · · , bK [l]
]

, (8)

and Z[l] denotes the M ×N noise matrix.
Define a Kt × Kr matrix Yi,j [l]

(

1 ≤ i ≤ M − Kt + 1, 1 ≤
j ≤ N − Kr + 1

)

, which is the received data from the jth to the
(j+Kr−1)th columns of Y[l] and from the ith to the (i+Kt−1)th
rows of Y[l]. Now we introduce the notation Vec(·) for a matrix
operation that stacks the columns of a matrix to form a new column
vector, and define complex scalars {αk = e−j2πdt sin(θk)/λ, βk =
e−j2πdr sin(θk)/λ}Kk=1. We can then form the following data vectors:

yi,j [l] = Vec
(

Yi,j [l]
)

=
K
∑

k=1

(

a(Kr)
r (θk)⊗ a(Kt)

t (θk)
)

αi−1
k βj−1

k bk[l]

+zi,j [l],

i = 1, · · · ,M −Kt + 1,

j = 1, · · · , N −Kr + 1, (9)

where a(Kr)
r (θk) and a(Kt)

t (θk) are the Kr×1 and Kt×1 truncated
versions of the steering vectors ar(θk) and at(θk), respectively. The

covariance matrix corresponding to yi,j [l] is given by

Ri,j = E
[

yi,j [l]y
H
i,j [l]

]

(10)

where E[·] denotes the expectation operation and [·]H represents the
Hermitian transpose. Like the classical spatial smoothing technique
[16], we can sum all the R̂i,j together to spatially smooth the signal
covariance matrix:

R =

∑(M−Kt+1)
i=1

∑(N−Kr+1)
j=1 Ri,j

(M −Kt + 1)(N −Kr + 1)
. (11)

In practice, the sample covariance matrix of (10)

R̂i,j =
1

L

L
∑

l=1

yi,j [l]y
H
i,j [l] (12)

is used, where L is the number of snapshots.

3.2. Selection of Kt and Kr

As shown in (9) and (11), the effective aperture and the number of
covariance matrices defined in (10) are related to Kt and Kr. In this
section, the selection of Kt and Kr is investigated for two cases of
a MIMO radar system.

3.2.1. Filled ULA for both the transmit and receive arrays

First, we consider the case with both the transmit and receive ar-
rays being filled ULAs [5], i.e., half-wavelength interelement spac-
ing with dt = dr = λ/2. In this case, the KtKr × 1 vector
a(Kr)
r (θk) ⊗ a(Kt)

t (θk) has only (Kt +Kr − 1) distinct elements;
in fact, this appears to be the smallest possible number of distinct
elements, and there are (M−Kt+1)(N −Kr +1) number of Ri,j

defined in (10); nevertheless, only (M −Kt+1+N−Kr) distinct
Ri,j are actually used for spatial smoothing. Therefore, in order to
identify K coherent targets, Kt and Kr should satisfy the following
conditions:

Kt +Kr − 1 > K

M −Kt + 1 +N −Kr > K. (13)

It can be seen that an enhanced spatial resolution will be obtained by
increasing the value of Kt or Kr . However, the number of covari-
ance matrices Ri,j will decrease in such a case, leading to a decrease
of the maximum number of coherent targets that can be identified by
the proposed method. Consequently, these is a trade-off between the
array aperture and the number of coherent targets identified by the
proposed method. In particular, when the following condition

Kt +Kr − 1 = M −Kt + 1 +N −Kr (14)

is met, i.e., Kt +Kr = M+N+2
2

, the maximum number of coherent
targets that can be identified will be obtained. On the other hand, the
proposed method will be equivalent to the TDS method when Kt

and Kr are set to M and 1, respectively. So the TDS method can be
considered as a special case of the proposed one. By setting Kt and
Kr properly, the equivalent aperture of the proposed method can be
larger than that of the TDS method.
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3.2.2. Filled ULA for transmit array but sparse ULA for receive ar-
ray

When the transmit array is a filled ULA and the receive array is a
sparse ULA with M/2-wavelength interelement spacing, the virtual
aperture of the MIMO radar system is a filled-element ULA with
MN distinct elements [5]. The vector a(Kr)

r (θk) ⊗ a(Kt)
t (θk) for

this case has KtKr distinct elements, and there are (M − Kt +

1)(N−Kr+1) distinct Ri,j defined in (10) actually used for spatial
smoothing. Similarly, the following conditions

KtKr > K

(M −Kt + 1)(N −Kr + 1) > K (15)

should be satisfied to identify K coherent targets. In this case the
maximum number of coherent targets which can be identified by
the proposed method is obtained when (KtKr) = (M − Kt +

1)(N − Kr + 1). For simplicity, we set Kt = M+1
2

and Kr =
N+1

2
in our proposed method, and then, the maximum number of

coherent targets that can be identified by the proposed method is
(M+1)(N+1)

4
−1. Note that if N > 3, the number of coherent targets

identifiable by the proposed method is larger than M − 1, which is
the maximum number of identifiable targets by the TDS method.

4. SIMULATIONS

In this section, simulations are carried out to investigate the perfor-
mance of the proposed method compared with the TDS method. We
consider a MIMO array configuration where a ULA of M = 10 an-
tennas is used for transmitting and a ULA of N = 10 antennas for
receiving. Two scenarios are considered. In the first scenario, three
coherent targets with the same signal-to-noise ratio (SNR) are lo-
cated at the angles θ1 = 10◦, θ2 = 20◦ and θ3 = 30◦, respectively.
In the second scenario, the three angles are changed to θ1 = 50◦,
θ2 = 60◦ and θ3 = 70◦. All simulations are averaged over 500
independent runs. Define the root mean squared error (RMSE) as

1

K

K
∑

k=1

√

√

√

√

1

500

500
∑

n=1

(θk − θ̂n,k)2 (16)

where θ̂n,k is the estimate of θk at the nth run.

4.1. Example 1: both the transmit and receive arrays are filled
ULAs

In the first example, both the transmit and receive arrays are arranged
with half-wavelength spacing between adjacent antennas. To form
the same aperture as the TDS method, the proposed one chooses
Kt = 5 and Kr = 6. The performance of the two methods is studied
using the ESPRIT-based algorithm [7]. Fig. 1 shows the RMSEs of
DOA estimation versus the number of snapshots for SNR = 20 dB.
Fig. 2 shows the RMSEs of DOA estimation as a function of input
SNR for L = 50. As shown, the proposed method has achieved
higher estimation accuracy than the TDS method. This is because,
although there are only 10 distinct covariance matrices defined in
(10), the proposed method has actually used (M − Kt + 1)(N −
Kr + 1) = 30 covariance matrices for spatial smoothing, and thus
obtained a better conditioned estimate of the covariance matrix.
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Fig. 1. RMSEs of DOA estimation versus the number of snapshots.
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Fig. 2. RMSEs of DOA estimation versus input SNR.
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4.2. Example 2: the receive array is a sparse ULA

In the second example, the transmit array is a filled ULA, while the
receive array is a sparse ULA. SNR = 20 dB and L = 50. Fig. 3
shows the effect of interelement spacing of the receive array on the
estimation performance for the two different signal scenarios consid-
ered in Example 1. From the two figures, we see that the proposed
method outperforms the TDS method significantly, especially for the
second scenario, as the interelement spacing of the receive array in-
creases.

Now assume that 11 coherent targets are located at the angle re-
gion [−80◦, 70◦], with equal angle interval of 15◦. Both Kt and Kr

are set to 6 for the proposed method. Two cases of receive arrays
with dr = 3λ and dr = 5λ, respectively, are considered. In this sce-
nario, the TDS method fails because the number of coherent targets
is larger than the maximum number allowed by it. On the other hand,
the proposed one has KtKr = 36 distinct elements in the vector
a(Kr)
r (θk)⊗ a(Kt)

t (θk) and has (M −Kt +1)(N −Kr +1) = 25
distinct covariance matrices defined in (10) for spatial smoothing.
Therefore, the proposed method can localize all the coherent targets.
With SNR = 20 dB and L = 50, the spatial spectrum of the pro-
posed method by applying the classic MUSIC algorithm is shown in
Fig. 4. We can clearly see from the two figures that there are 11
largest peaks located at the real DOAs of the targets, and they have
been identified successfully.
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Fig. 3. RMSEs of DOA estimation versus dr.
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Fig. 4. Spatial spectrum of the proposed method.

5. CONCLUSIONS

A novel improved DOA estimation method for coherent targets has
been introduced for MIMO radar systems. Different from the exist-
ing TDS method, the proposed one exploits both transmission and
reception diversity smoothing to tackle the ill-conditioning problem
of the covariance matrix. It can achieve better estimation accuracy
than the TDS method since there are more covariance matrices avail-
able for spatial smoothing. On the other hand, the number of co-
herent targets that can be identified by the proposed method is much
larger than that of the TDS method when the receive array is a sparse
one. The effectiveness of the proposed method has been demon-
strated by extensive simulation results.
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