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ABSTRACT

This paper considers the problem of testing for the indepen-
dence among multiple (≥ 2) random vectors with each ran-
dom vector representing a time series captured at one sensor.
Implementing the Generalized Likelihood Ratio Test involves
testing the null hypothesis that the composite covariance ma-
trix of the channels is block-diagonal through the use of a gen-
eralized Hadamard ratio. Using the theory of linear prediction
and its connection with Gram determinants, it is shown that
this generalized Hadamard ratio can be written as a product
of scalars which are independently drawn from a beta distri-
bution under the null hypothesis. This result is useful from a
Monte Carlo analysis standpoint in that it is much more com-
putationally efficient to form a product of scalar beta random
variables than it is to compute the determinant of complex
Wishart matrices.

Index Terms— Generalized Likelihood Ratio Test, Mul-
tichannel Coherence, Multichannel Signal Detection, Test for
Block Independence

1. INTRODUCTION

Detecting the presence of a common but unknown signal
among two or more data channels is a problem that finds
its uses in many applications including collaborative sensor
networks, geological monitoring of seismic activity, as well
as both active and passive radar and sonar applications. In
[1], a non-parametric approach to multi-channel detection
was proposed by defining the Generalized Coherence (GC)
measure among multiple channels. The GC measure is shown
to be a natural extension of the Magnitude-Squared Coher-
ence (MSC) measure for more than two channels. Under the
assumption that the observations from each channel contain
white, complex normal noise, the authors derive closed-
form expressions for the null distributions of both the MSC
and three-channel GC measures. This leads to a recursive
formulation for finding the null distribution as one adds an
additional channel. This work was recently extended in [2] by
considering the detection of multiple temporally correlated

time series. Forming a random vector containing the time
series from all channels, the GLRT involves testing whether
or not the space-time covariance matrix is block-diagonal
through the use of a generalized Hadamard ratio involving a
sample covariance matrix computed from multiple indepen-
dent realizations.

In this paper, we consider the detection problem addressed
in [2]. Using the theory of linear prediction and its connection
with Gram determinants, we show that the likelihood ratio can
be written as a product of independent beta random variables
under the null hypothesis that the covariance matrix is truly
block-diagonal. This extends the result in [1] to the case of
multiple temporally correlated time series. Although the au-
thors in [1] were able to derive exact distributions of the test
statistic under the null hypothesis, doing so here under general
circumstances is more difficult. However, one always has the
option of determining the threshold needed to approximately
achieve a desired false alarm probability through the use of
Monte Carlo techniques. It is in this sense that the results of
this paper become useful as we show that one simply needs to
multiply scalar beta random variables to stochastically sim-
ulate the null distribution of the test statistic as opposed to
computing the determinants of random matrices.

2. REVIEW OF THE LIKELIHOOD RATIO

The problem considered here is testing for the indepen-
dence among L random vectors {xi}Li=1 with each vec-
tor xi = [xi[0] · · · xi[N − 1]]T representing a length N
time series captured at sensor i. Assuming this collection
of random vectors to be zero mean, the composite vector
z =

[
xT

1 · · · xT
L

]T
has space-time covariance matrix

R = E
[
zzH

]
=


R11 R12 · · · R1L

RH
12 R22 · · · R2L

...
...

. . .
...

RH
1L RH

2L · · · RLL

 ∈ CLN×LN

with Rij = RH
ji = E

[
xixH

j

]
∈ CN×N a temporal cross-

covariance matrix. This matrix not only characterizes the
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second-order temporal information for each channel individu-
ally but also captures the interdependence between every pair
of channels.

If the set of random vectors {xi}Li=1 is jointly proper com-
plex normal, testing for independence among all L channels
boils down to testing whether or not the covariance matrix R
is block-diagonal. Casting this problem into the standard in-
ference framework, we consider the following hypothesis test

H0 : R ∈ R0

H1 : R ∈ R

withR denoting the set of all positive-definite Hermitian ma-
trices and R0 denoting the set of all matrices in R which are
additionally block-diagonal.

We now assume we are given an experiment producingM
iid realizations {xi[m]}Mm=1 of the random vector from each
channel i, where

xi[m] = [xi[0,m] · · · xi[N − 1,m]]T ∈ CN

The collection of random vectors

z[m] =
[
xT

1 [m] · · ·xT
L[m]

]T
, m = 1, . . . ,M

has probability density function (PDF)
M∏

m=1

f (z[m];R) =
1

πLNM det (R)M
exp

{
−M tr

(
R−1R̂

)}
with R̂ being an estimated composite covariance matrix

R̂ =
1
M

M∑
m=1

z[m]zH [m]

=


R̂11 R̂12 · · · R̂1L

R̂H
12 R̂22 · · · R̂2L

...
...

. . .
...

R̂H
1L R̂H

2L · · · R̂LL


and R̂ij being an M sample estimate of the matrix Rij . The
GLRT for this problem involves computing the likelihood ra-
tio [2]

Λ =


max
R∈R0

M∏
m=1

f (z[m];R)

max
R∈R

M∏
m=1

f (z[m];R)


1/M

=
det
(
R̂
)

det
(
D̂
) =

det
(
R̂
)

∏L
i=1 det

(
R̂ii

) = det
(
Ĉ
)

(1)

where R̂ and D̂ = blkdiag
{
R̂11, . . . , R̂LL

}
are maximum

likelihood (ML) estimates of R under the alternative and null
hypotheses, respectively, and Ĉ = D̂−1/2R̂D̂−H/2 is a di-
mensionless matrix referred to as the coherence matrix [2].

2.1. Invariance Properties

Under suitable choices for the matrix T , the hypothesis testing
problem and the likelihood ratio statistic given in (1) remain
unchanged upon replacing the random vector z with Tz. Two
examples of such linear transformations are given below.

• The set of all matrices T = blkdiag {T1, . . . , TL}
with Ti any N × N invertible matrix [2]. This invari-
ance property shows us that there exists no channel-
by-channel invertible linear transformation, including
scaling and filtering, that moves a covariance from H0

toH1 or vice versa.

• The set of all matrices T = P ⊗ IN with P any L ×
L permutation matrix. This invariance property shows
that the ordering in channel index has no influence on
likelihood.

3. NULL DISTRIBUTION OF THE LIKELIHOOD
RATIO

We’ll begin by considering the random matrix ZT

ZT =


x1[1] x1[2] · · · x1[M ]
x2[1] x2[2] · · · x2[M ]

...
...

. . .
...

xL[1] xL[2] · · · xL[M ]

 ∈ CLN×M

so that each column in matrix Z corresponds to allM realiza-
tions of one particular random variable, xi[n]. For any i ≥ 2
and any n = 0, . . . , N − 1, it will become convenient to par-
tition the data matrix Z as follows

Z =
[
Zi Xin xin · · ·

]
where the matrix Zi ∈ CM×(i−1)N contains all M realiza-
tions of the time-series x1, . . . ,xi−1

Zi =


xT

1 [1] xT
2 [1] · · · xT

i−1[1]
xT

1 [2] xT
2 [2] · · · xT

i−1[2]
...

...
. . .

...
xT

1 [M ] xT
2 [M ] · · · xT

i−1[M ]


the matrix Xin ∈ CM×n contains all M realizations of the
ith time-series up to temporal sample n− 1

Xin =


xi[0, 1] xi[1, 1] · · · xi[n− 1, 1]
xi[0, 2] xi[1, 2] · · · xi[n− 1, 2]

...
...

. . .
...

xi[0,M ] xi[1,M ] · · · xi[n− 1,M ]


and the vector xin = [xi[n, 1] xi[n, 2] · · · xi[n,M ]]T ∈ CM

contains all M realizations of random variable xi[n]. With
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this partition in the data matrix, the northwest corner of the
Gram matrix ZHZ obtains the following structure

ZHZ =


RZZ RZX rZx

RH
ZX RXX rXx

rH
Zx rH

Xx rxx

· · ·

...
. . .


with entries that are defined as follows

RZZ = ZH
i Zi, RZX = ZH

i Xin, RXX = XH
inXin

rZx = ZH
i xin, rXx = XH

inxin

rxx = xH
inxin

Gram determinants [3] are a technique commonly used to
test whether or not a collection of vectors in an inner prod-
uct space are linearly independent. Namely, a set of vectors
are linearly independent if and only if the determinant of their
Gram matrix is non-zero. Using this theory, it is straightfor-
ward to show that the determinant of the estimated composite
covariance matrix can be written

MLN detR̂ = det
(
ZHZ

)
= det

(
XH

1NX1N

) L∏
i=2

N−1∏
n=0

σ2
in(R̂)

where

σ2
in(R̂) = rxx−

[
rH

Zx rH
Xx

] [ RZZ RZX

RH
ZX RXX

]−1 [ rZx

rXx

]
Using the definition of these matrices given above, this term
can be written

σ2
in(R̂) = xH

in

(
I − [Zi Xin]

[
RZZ RZX

RH
ZX RXX

]−1 [
ZH

i

XH
in

])
xin

= xH
in (I − PZX) xin

= xH
inP

⊥
ZXxin

where PZX denotes the projection onto the (i − 1)N + n
dimensional subspace 〈ZX〉 spanned by the vectors [Zi Xin].
Moreover, using results for the inverse of a 2×2 block matrix,
one can derive yet another equivalent expression for this term

σ2
in(R̂) = xH

inP
⊥
ZXxin

= xH
in

(
P⊥X − P⊥XZi

(
ZH

i P
⊥
XZi

)−1
ZH

i P
⊥
X

)
xin

= xH
inP

⊥
X xin − xH

inPP⊥X Zxin (2)

where PX = XinR
−1
XXX

H
in and PP⊥X Z denote the projection

onto the n dimensional subspace spanned by the vectors Xin

and the projection onto the (i − 1)N dimensional subspace
spanned by the vectors P⊥XZi, respectively.

To compute the determinant of the block-diagonal matrix
D̂ in the denominator of the likelihood ratio, one can take a

very similar approach to show that

MN detR̂ii = det
(
XH

iNXiN

)
=

N−1∏
n=0

σ2
in(R̂ii)

where

σ2
in(R̂ii) = rxx − rH

XxR
−1
XXrXx

= xH
in

(
I −XinR

−1
XXX

H
in

)
xin

= xH
inP

⊥
X xin

Recalling the relationship given in (2), note that this term can
alternatively be expressed as follows

σ2
in(R̂ii) = xH

inP
⊥
X xin

= xH
inP

⊥
ZXxin + xH

inPP⊥X Zxin

Using the decompositions of the determinants of these
matrices, it is then straightforward to see that the likelihood
ratio given in (1) can finally be written

Λ =
detR̂

detD̂
=

det
(
ZHZ

)∏L
i=1 det

(
XH

iNXiN

)
=

det
(
XH

1NX1N

)
det
(
XH

1NX1N

) L∏
i=2

∏N−1
n=0 σ

2
in(R̂)

det
(
XH

iNXiN

)
=

L∏
i=2

N−1∏
n=0

σ2
in(R̂)

σ2
in(R̂ii)

=
L∏

i=2

N−1∏
n=0

xH
inP

⊥
ZXxin

xH
inP

⊥
ZXxin + xH

inPP⊥X Zxin
(3)

Each term within the product of this expression represents the
ratio of the estimated variance of a residual from two differ-
ent linear least squares problems: the numerator, σ2

in(R̂), is
found by regressing xi[n] onto all the random variables pre-
vious to it while the denominator, σ2

in(R̂ii), is found by re-
gressing xi[n] onto those random variables associated with
channel i only. This process is depicted pictorially in Figure
1. Recalling the second invariance property in Section 2.1,
one must keep in mind that the order in channel index one
uses when constructing this sequence of estimation problems
ultimately has no effect on the likelihood ratio.

To characterize the distribution of the likelihood ratio un-
der the null hypothesis, we begin by imposing the assumption
that z ∼ CN (0, D) for any D = blkdiag {R11, . . . , RLL} ∈
R0. Recalling the first invariance property in Section 2.1,
we note that under these circumstances we can always ap-
ply the linear transformation T = D−1/2, a pre-whitener, to
the random vector z without any consequence to the likeli-
hood ratio. Thus, there is no loss in generality to assume
that D = ILN (note that ILN ∈ R0) or equivalently that
xin

iid∼ CN (0, IM ).
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Fig. 1. Individual terms of the likelihood ratio involve linearly
predicting the vector xin using the data matrices Zi and Xin.

Looking closely at (3), it is clear that the two projections
P⊥ZXxin and PP⊥X Zxin lie in two orthogonal subspaces of
CM , i.e. 〈P⊥ZXxin, PP⊥X Zxin〉 = 0. A straightforward ap-
plication of Cochran’s Theorem [4] then shows that the two
values xH

inP
⊥
ZXxin and xH

inPP⊥X Zxin are statistically inde-
pendent chi-squared random variables with degrees of free-
dom 2 rank

(
P⊥ZX

)
= 2αin and 2 rank

(
PP⊥X Z

)
= 2βi,

respectively, where

αin = M − (i− 1)N − n
βi = (i− 1)N

Noting that ifX and Y represent two independent chi-squared
random variables with degrees of freedom νX and νY , respec-
tively, then the random variable X

X+Y is distributed according
to a beta distribution with parameters νX/2 and νY /2, it then
follows that

Λ|H0
d=

L∏
i=2

N−1∏
n=0

Yin (4)

where Yin ∼ Beta(αin, βi), all distributed independently of
one another. Note that if the assumption of a complex nor-
mal distribution for the data channels is replaced with a real-
valued multivariate normal, we can modify the above state-
ments accordingly by simply halving the parameters of these
beta random variables, i.e. Yin ∼ Beta(αin/2, βi/2). Equa-
tion (4) says, “under the null hypothesis, the likelihood ratio
statistic is distributed as the product of beta random variables,
Beta(αin, βi)”.
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Fig. 2. Monte Carlo Results.

For both the real and complex-valued versions of the GLR
and with L = 3, N = 24, and M = 100, Figure 2 displays
histograms of Monte Carlo trials generated in two different
fashions: the darker plots are generated by drawing data from
a normal distribution, forming sample covariance matrices,
and computing the ratio of determinants given in (1) while the
lighter plots are generated by sampling from the appropriate
beta distribution and forming the product given in (4). These
figures show good agreement in the histograms demonstrating
the fact that the null distribution of (1) can be stochastically
generated by drawing independent beta random variables and
forming their product.

4. CONCLUSIONS

Detecting the presence of common characteristics among two
or more time-series channels is a problem that finds its uses in
a wide range of applications. To make the detection method
applicable under general circumstances, this paper considers
a GLRT that simply tests whether or not a composite covari-
ance matrix is block-diagonal through the use of a generalized
Hadamard ratio. Using the theory of Gram determinants, we
show that this generalized Hadamard ratio can be written as
a product of ratios involving the error variance of two linear
predictors. Assuming that the underlying covariance matrix is
truly block-diagonal, we then conclude that the likelihood ra-
tio is statistically equivalent to a product of independent beta
random variables under the null hypothesis. This result has
several uses, one of them being the determination of thresh-
olds needed to achieve given false alarm probabilities.
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