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ABSTRACT

In this paper, we propose a novel angle of departure (AOD)
aided sensor localization algorithm. Through the multiple fre-
quency tuning technique at a fixed-spaced two-antenna an-
chor node, a non-uniform linear array can be rebuilt at each
ground sensor node. We convert the angle estimation into
a real number reconstruction by Chinese remainder theorem
(CRT) and then provide a new algorithm to solve the con-
gruence problem. Compared with the conventional spectral
searching algorithms, the proposed one is computationally ef-
ficient and also performs much better than other CRT recon-
struction algorithms. The validity and the advantages of the
proposed algorithm is proved by numerical simulations.

Index Terms— Localization, multiple frequencies tun-
ing, angle of departure, Chinese remainder theorem (CRT).

1. INTRODUCTION

Information fusion between the sensor spatial attribute and
the artificial perception of external environment is now play-
ing an important role in many wireless distributed systems,
e.g., wireless sensor networks (WSNs). In that sense, sensor
localization has attracted much attention in recent years [1]. A
distributed sensor localization scheme usually relies on one or
several auxiliary parameters such as received signal strength,
time/time difference of arrival or the connectivity such as av-
erage one-hop distance. Particularly, angle information is also
utilized in [2–4], where the single antenna sensor node con-
ducts angle of departure (AOD) estimation for further self-
localization. Besides the above narrow-band systems, a in-
terference field [5] created by two linear chirp waves with
slight frequency difference is used to convert the AOD esti-
mation into a frequency estimation problem. Given that the
system cost and the total energy consumption, however, it is
impractical for each anchor node to equip antenna array or to
adjust the system to be a wide-band one. In addition, it is also
improper for each sensor node to perform complicate angle
estimation algorithm if one wants to prolong the sensor’s life
as long as possible.
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To cope with the aforementioned problems, we try to
devise a novel distributed AOD aided sensor localization
scheme. With the help of multiple frequencies tuning at a
fixed-spaced two-antenna anchor node, the unattended sensor
node can rebuild a non-uniform linear array to estimate the
angle information with respect to its own position. To relieve
the computational burden of sensor node, we first utilize a
subspace iteration algorithm to abstract the spatial charac-
ter of line of sight signal component, and further convert
the angle estimation into a real number construction from
the perspective of Chinese remainder theorem (CRT). We
also propose a new algorithm to solve this congruence prob-
lem. Note that an apparent discrepancy with the conventional
uniform linear array with antenna spacing being half the
wavelength, our multiple frequency synthetic array (MFSA)
is actually of spatial sub-Nyquist sampling.

2. AOD AIDED LOCALIZATION SYSTEM MODEL

2.1. System Depiction and Signal Model

Consider a wireless networks includes an anchor node e-
quipped with two omnidirectional antennas spacing d and
a number of unattended single antenna sensor nodes. The
anchor node is assumed to possess sufficient energy and is
arranged at a much higher position, so that it can connect
all sensor nodes in a line of sight (LOS) way. As a trans-
mitter, each antenna of anchor node is assigned by a unique
pilot sequence, e.g., let cm(t) be the baseband signal of the
mth antenna, which satisfies

∫ Ts

0
cm(t)c∗k(t)dt = δ(m − k),

where Ts denotes a basic duration. The localization data
frame format is shown in Fig.1, where the preamble is used
for symbol synchronization and the following N repeated
pilot sequences are used for angle estimation. Let θ denotes
the AOD of LOS signal between transmitter and sensor node.
Although the localization system can work at different fre-
quency points, it is still a narrow-band system. For that, one
can refers to the IEEE 802.15.4 protocol.

When the system works at frequency fi with wavelength
λi, the baseband signal received at sensor node is given by,

ri(t) =
2∑

m=1

hie
−jϕm(θ)cm(t− nTS − τ) + w(t) (1)
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where ϕm(θ) = 2π d
λi
(m−1) cos θ denotes the relative phase

between the mth antenna and the reference one. For conve-
nience, we herein let the first antenna be the reference, i.e.,
ϕ1(θ) = 0. The path loss hi = λi

√
Ge−j2πl/λi/(4πl), where

G denotes the equivalent antenna field radiation patterns in
the LOS direction. For omnidirectional antenna in our sys-
tem, it has G = 1. Delay τ is caused by the transmitting
distance l from anchor node to sensor node. w(t) is Gaussian
white noise with zero-mean and variance σ2

n, which is inde-
pendent of angle parameter. In addition, the network is usual-
ly static, therefore hi and θ are assumed to be time invariable
in the whole localization stage. Note that we disregard the
carrier frequency offset of the transceiver and assume it has
been compensated perfectly beforehand.
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Fig. 1. The frame format of pilot signals.

After performing symbol synchronization and the match
filtering, i.e., ri(m,n) =

∫ nTs

(n−1)Ts
ri(t)c

∗
m(t)dt, we can easi-

ly obtain
ri(n) = hiai + w̄i(n). (2)

where ri(n) = [ri(1, n), ri(2, n)]
T , ai = [1, e

−j2π d
λi

cos θ
]T ,

and w̄i(n) is noise vector after the linear transformation.
When stacking all N measurements, we have

Xi = aiSi +Ni (3)

where Xi = [ri(1), · · · , ri(N)], Si = hi1
T with 1 =

[1, · · · , 1]T and Ni = [w̄i(1), · · · , w̄i(N)]. We name ri(n)
in (2) as a pseudo-snapshot for the discrepancy with the
conventional array snapshot.

2.2. Multi-Frequency Synthetic Array

Intuitively, if we just consider the second element of ai, i.e.,
ai = e

−j2π d
λi

cos θ
, i = 1, · · · , F , they manifest a virtu-

al non-uniform array structure with array manifold vector
[1, a1, a2, · · · , aF ]T . More important, this virtual array also
implies the AOD information. Note that a1, · · · , aF are not
derived from the physical antennas but are synthesized by
way of multiple frequencies turning, so we name it as multi-
frequency synthetic array (MFSA) for short, the philosophy
of which is shown in Fig.2.

According to [6], the ambiguity, i.e., ∃ ψ ∈ [0, π) such
that a(θ) = a(ψ), is a vital problem for non-uniform array;
therefore we give the following theorem to guarantee the un-
ambiguity of MFSA, the similar discussion is also appeared
in [7].

reference

real antenna

virtual antenna

θ

d

Fig. 2. The description of MFSA.

Theorem 1 For the MFSA with selected wavelength λi ,
Qηi, i = 1, · · · , F , where Q denotes a quantification factor
and ηi’s are integers, it is unambiguity providing that ηi’s are
pair-wisely co-prime and min{η1, · · · , ηF } >

√
2d/Q.

Proof 1 The requirement of angle ambiguity can be simpli-
fied as e−j2π

d
λi

cos θ
= e

−j2π d
λi

cosψ , so we further have

2πd(cos θ − cosψ)/λi = 2kiπ. (4)

For all F ambiguity equations in (4), define ρi = (cos θ −
cosψ) for the ith one and di = 2d/λi = 2d/(Qηi). if con-
sidering the condition ηi >

√
2d/Q, we know that | ρi |≤ 2

and ki ≤ ⌊di⌋ < di < ηi; moreover, ρi falls into some dis-
crete values, i.e., ρi = {0,±2ki/di}. We now consider ρi
and ρj with respect to the co-prime integers ηi and ηj . As-
sume that there exists non-zero k̄i < ηi and non-zero k̄j < ηj
to make ρi = ρj , then k̄iηi = k̄jηj if neglecting the com-
mon coefficient 2d/Q. It means that ηi/ηj = k̄j/k̄i, which
is a contradiction to the fact that ηi and ηj are pair-wisely
co-prime integers. Hence, we have

{ρ1 ∩ ρ2 ∩ · · · ∩ ρF } = {0}. (5)

The above result manifests that cos θ = cosψ, in other
words, the MFSA is unambiguity.

3. THE PROPOSED ESTIMATION ALGORITHM

To achieve the angle estimation, we have to acquire the spatial
character of LOS signal. One well-known measure is based
on the eigenvalue decomposition. We herein exploit a alterna-
tive algorithm which can decrease the computational burden.

Beforehand, we stack the observation data Xi, i =

1, · · · , F , defining X =
[
XT

1 ,X
T
2 , · · · ,XT

F

]T
= AS, where

A = diag{a} with a = [a1; · · · ;aF ] and S = [S1; · · · ;SF ],
for calculating the correlation matrix. We show the itera-
tive subspace algorithm [8] for spatial character extract in
Algorithm 1.

According to the above algorithm, we can get the estima-
tion of ai, i.e., âi = â(2i)/â(2i− 1), where â(i) denotes the
ith element of vector â.

3.1. CRT-based Algorithm

Chinese remainder theorem [9] tells that a positive integer K
can be uniquely reconstructed from its remainders modulo L
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Algorithm 1 Spatial Character Extract
Input: The correlation matrix, R = XXH ∈ C2F×2F ;
Output: The estimation of a

1: Initialization: l = 1;
2: q(0) = [1, 0, · · · , 0]T , q(1) = [1, 1, · · · , 1]T ;
3: while ∥ q(l) − q(l−1) ∥≥ ϵ do
4: q(l) = Rq(l−1);
5: end while
6: return â = q(l)/q(l)(1).

positive integer M1, · · · ,ML, if K < lcm{M1, · · · ,ML},
where lcm{·} denotes the least common multiple operation,
and furthermore it provides a simple reconstruction formula
if all moduli Mi are co-prime [10]. We now convert the angle
estimation problem into a real number reconstruction.

Let ϕ̂i = angle{âi} = ϕi +∆ϕi, where ϕi is true value,
∆ϕi is error, and angle{·} is to obtain the phase. If the phase
is defined in [−π, π], then it should be adjusted as below,

ϕ̂i =

{
ϕ̂i if ϕ̂i ≥ 0

ϕ̂i + 2π if ϕ̂i < 0
. (6)

Regardless of error, we know that

d cos θ = miλi +
ϕi
2π
λi = miQηi + bi, (7)

where mi is the unknown wrapping integer. For convenience,
we define D = d cos θ and bi = ϕi

2πQηi. Obviously, D ≤ d.
In practice, the observed phase usually has error, e.g., b̂i =
bi + ∆bi =

ϕi

2πQηi +
∆ϕi

2π Qηi. Now the question is how to
reconstruct a real numberD from its F erroneous remainders.

As we know that when no errors occur, all remainders bi
have a common remainder bc divided by Q, i.e., bi = qiQ +
bc, qi = ⌊bi/Q⌋, ⌊·⌋ stands for the flooring operation. In
conventional CRT [10], if we define D0 , ⌊D/Q⌋, then D
can be uniquely reconstructed by,

D = QD0 + bc (8)

where D0 =
∑F
i=1 γ̄iγqi mod Γ, Γ , η1η2 · · · ηF and γi ,

Γ/ηi. γ̄i is the modular multiplicative inverse of γi modulo
ηi, i.e., γ̄iγi ≡ 1 mod ηi. Note that the above formula re-
quires all ηi’s are co-prime integers, which means that the sys-
tem bandwidth is usually very wide. In addition, the analysis
in [10] manifests that reconstruction formula is error sensi-
tive. We propose a novel divide-and-rule algorithm as shown
in Algorithm 2, which actually divide the whole MFSA into
multiple sub-MFSA only consisting two virtual antennas.

Given that the remainder error in our algorithm, we
have b̂c = 1

F

∑F
i=1 b̂

c
i with b̂ci = b̂i − Q⌊b̂i/Q⌋, then

q̂i = ⌊(b̂i − b̂c)/Q⌋. In addition, we also define a special
function F(D̄) =

∑F
i=1 d

2(r̂i, D̄ | λi), where the circular
distance d(x, y | C) , x− y − k0C with k0 = [(x− y)/C],
operator [x] = ⌊x+ 0.5⌋.

Algorithm 2 CRT-based AOD Estimation

Input: ϕ̂i, i = 1, · · · , F ;
Output: The estimation of θ

1: Form the first congruence problem via {ϕ̂i}Fi=1 and the
second one via {−ϕ̂i}Fi=1 utilizing (6);

2: Select all J =
(
F
2

)
frequency pairs to estimate Dj’s by

(8) for each problem;
3: Define data set D = {D̂j | D̂j ≤ d, j = 1, · · · , J} for

the first problem and D̄ for second one based on the same
condition;

4: Minimize function F(D̄) in set D ∪ D̄, then θ̂ =

cos−1(D̂/d) if D̂ ∈ D or θ̂ = π−cos−1(D̂/d) if D̂ ∈ D̄.
5: return θ̂.

Remark 1: The reason we adopt two versions of phase is
that D appears to be negative number when θ ∈ (π/2, π]. To
do so, if one version of phase can give a successful estimation;
conversely, its counterpart functions like a erroneous one, the
estimation by which will be larger than d. This feasibility is
due to the error sensitivity of CRT.

Remark 2: For each sub-MFSA formed by two frequen-
cies, in practice, {ηi, ηj} usually have a greatest common di-
visor (GCD) Mij , therefore the angle unambiguity condition
should be revised as min{ηi, ηj} >

√
2dMij/Q. In addition,

min lcm{ηi, ηj} should be larger than or equal to d/Q for the
basic requirement of CRT.

3.2. Discussion

Note that the spatial character extraction has computational
complexity O(4F 2), which is in some extent computational
efficient comparing with the O(8F 3) of eigenvalue decom-
position. In addition, different from the searching algorith-
m [11], the proposed CRT-based one is a kind of closed-form
solution, consequently, it is very appropriate for sensor node
to achieve self-localization.

On the other hand, the proposed divide-and-rule algorith-
m has a improved performance comparing with other CTR
algorithms. The reason is rooted in the fact that the more er-
roneous remainders used in reconstruction formula the larger
deviation to real value we can get no matter how to choose the
reference remainder in [10]. In our algorithm, the rejection of
improper candidates guarantees a improved estimation.

4. SIMULATIONS

To prove the effectiveness of the proposed localization
scheme, we refer to the IEEE 802.15.4 protocol, in which
it specifies 16 channels with carrier frequencies span from
2.405GHz to 2.480GHz in 5MHz steps with wavelength λ ∈
{0.1247, 0.1245, 0.1242, · · · , 0.1215, 0.1212, 0.1210}m, so
J =

(
16
2

)
= 120. The quantification factor Q = 0.0001 and

N = 200. The signal power is normalized as one, so that the
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Fig. 3. The RMSE performance comparison.
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Fig. 4. The RMSE performance with system parameters.

signal-noise-ratio (SNR) is defined as 10 log10(1/σ
2
n). For

comparison, the RARE estimator [11] searches the angle with
step 0.0001rad in [0, π], and the improved CRT algorithm [10]
use {0.1240, 0.1230, 0.1210}m to perform calculation. The
spatial character extract in our proposed localization scheme
has the iteration suspending condition ϵ = 10−3. For as-
sessment, the root mean square error (RMSE) is defined as√
E(θ̂ − θ)2. Each simulation result is the statistics of 2000

independent trials.

Fig.3 (a) illustrates that the proposed algorithm has a ob-
viously superiority over the one in [10] and nearly the same
performance as the RARE estimator, in which the AOD of
LOS signal θ = 3π/10, d = 0.8m. Fig.3 (b) gives a sam-
pled glance at how the estimation performance varies with
the different AOD, where we fix SNR=9dB and other system
parameters are the same as previous example.

In addition, we also consider the effect of parameters d
and F on the system performance, the RMSE performance
of which are shown in Fig.4. In this example, we test pa-
rameter d by utilizing all 16 frequency points, and then fix
d = 1m to test F (i.e., selecting the first F frequency points
in set λ for angle estimation). The AOD of LOS signal is set
as θ = 4π/7. From the statistical results, we can see that
the accuracy of angle estimation improves with the increase
of frequency points and antenna spacing. Therefore, for a
fixed antenna spacing localization system, one should selec-
t as more frequency points as possible to guarantee a better
estimation.

5. CONCLUSION

Through the virtual non-uniform array generated by the mul-
tiple frequencies tuning, we have introduced a novel AOD
based sensor self-localization scheme. To decrease the com-
putational complexity, we first utilized iterative subspace al-
gorithm to extract the spatial character of LOS signal, and
then converted the angle estimation into a real number recon-
struction from the perspective of CRT. An effective algorithm
was also proposed to cope with this congruence problem.
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