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ABSTRACT

The problem of detecting the presence of a known signal in multiple
channels of additive noise, such as occurs in active radar with a sin-
gle transmitter and multiple geographically distributed receivers, is
addressed via coherent multiple-channel techniques. The transmit-
ted signal replica is treated as one channel in a suitable M -channel
detector with the remaining M − 1 channels comprised of data from
the receivers. To accommodate this approach, an invariance result
for the distribution of the eigenvalues of a Gram matrix is derived.
The result implies that false alarm probabilities for any detector
based on a function of the eigenvalues are not changed if one data
channel contains a signal replica, provided that the other M − 1
channels only Gaussian noise and all channels are independent.

Index Terms— Multiple-channel detection, Matched filter, Ac-
tive radar, Passive coherent radar, Eigenvalue distribution invariance

1. INTRODUCTION

Tests for detecting the presence of a common but unknown signal
in M ≥ 2 noisy channels have been studied extensively in con-
nection with passive localization of emitters for such applications as
passive sonar, non-invasive monitoring of mechanical systems, and
electronic support. In particular, the magnitude-squared coherence
(MSC) estimate has seen wide application in situations involving
M = 2 channels for over five decades (see, e.g., [1, 2] and the papers
included in [3]). Estimates of multiple coherence were investigated
and applied as detection statistics for passive detection with M > 2
channels in the 1970s and 1980s [4, 5]. The generalized coherence
(GC) estimate was introduced in 1988 [6], and its performance as a
statistic for passive multiple-channel detection were studied exten-
sively during the 1990s [7, 8, 9, 10]. The rise of MIMO systems
in sensing and communications has recently led to renewed inter-
est in multiple-channel detection. A generalized likelihood ratio test
(GLRT) for spatial correlation among a collection of complex circu-
lar Gaussian signals with unknown arbitrary covariance matrices was
derived in [11]. GLRTs and locally most powerful invariant tests for
vector-valued random processes with covariance matrices of known
rank were developed in [12, 13] and a Bayesian test for diagonal co-
variance matrix versus arbitrary non-diagonal covariance matrix for
a zero-mean complex Gaussian M ×N matrix was derived in [14].

A common feature of the MSC and GC statistics as well as statis-
tics derived in [11, 12, 13] is that they are functions of the eigen-
values of some non-negative definite M ×M matrix obtained from
samples of theM data channels as a Gram matrix. In [15], the distri-
bution of the MSC estimate was shown not to depend on the distribu-
tion of the data on one of the two channels provided the two channels
are independent and the second channel contains only white Gaus-
sian noise. This invariance property was given a geometric interpre-
tation in [16]. At the time, the principal reason for interest in this

invariance was that MSC methods were being used in practice with
reference channels on which a signal had already been detected by
single-channel means. Obtaining a two-channel detection is valuable
in localization of the signal source, and the invariance result lent con-
fidence that detection thresholds on the MSC estimate chosen to pro-
vide desired false alarm probabilities would remain approximately
valid as long as the second channel contained only noise. A similar
result was given for the GC estimate forM ≥ 2 channels in [9]. This
same paper remarked that the result implies one of the M channels
can be replaced by an exact signal replica without changing the dis-
tribution of the detection statistic under the signal-absent hypotheses
on the other M − 1 channels, thus suggesting the potential utility of
the GC estimate in active sensing. Another application in which this
formulation is of potential value is passive coherent radar where one
channel contains the direct-path signal from the transmitter of op-
portunity and the goal is to detect time-shifted and Doppler-shifted
replicates of this signal in other receiver channels [17].

Invariance of the distribution of the GC estimate to the distribu-
tion of data on one channel is a consequence of the distribution of
the determinant of a certain Gram matrix not depending on one of
the data vectors. This paper extends this invariance result to the dis-
tributions of the individual eigenvalues of that matrix, endowing the
distribution of any statistic formed as a function of these eigenvalues
with the desired invariance. Section 2 establishes the mathematical
framework for the remaining parts of the paper. The main theoretical
result on eigenvalue invariance is presented in Section 3, followed by
a brief analysis of the optimality of MSC-based detection with one
receiver in Section 4. Performance results for multiple-channel de-
tection using a signal replica, based on Monte Carlo simulations, are
shown and discussed in Section 5.

2. MATHEMATICAL FORMULATION

Consider M complex N -vectors x1, . . . ,xM with M < N cor-
responding to segments of time-series data from a collection of M
receivers. Denoted by X the N ×M matrix whose mth column is
xm/||xm||. The GC estimate for x1, . . . ,xM is [16]

γ2(x1, . . . ,xM ) = 1− detX†X

where X† denotes the hermitian transpose of X. The (i, j)th ele-
ment of the non-negative definite M ×M matrix X†X is the com-
plex inner product

gij =

〈
xi
||xi||

,
xj
||xj ||

〉
By construction, γ2 is invariant to unknown complex gains on

the channels; i.e., γ2(α1x1, . . . , αMxM ) = γ2(x1, . . . ,xM ) for
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any non-zero complex scalars α1, . . . , αM . With M = 2, the GC
estimate reduces to the MSC estimate [1]; i.e.,

γ2(x1,x2) =
| 〈x1,x2〉 |2

||x1||2||x2||2
, (1)

the distribution of which was shown in [15] not to depend on
the distribution of x1 provided it is independent of x2 and x2 ∼
CN (0, σ2I). In [16], these conditions for invariance are relaxed
slightly to include other spherically symmetric distributions on x2.
A similar result was shown to hold for the GC estimate on more than
two channels in [9].

As mentioned in Section 1, interest in invariance results of this
kind was motivated by a desire to apply detector based estimates of
coherence, whether MSC or GC, in situations in which one chan-
nel is known not to contain only noise. Recent results have shown
that GLRT and optimal Bayesian multiple-channel detectors for sig-
nals of known rank under various assumptions about noise levels
on the channels are based on functions of the eigenvalues of X†X
[11, 12, 14, 13, 18]. For example, in [18], the GLRT is derived for
the problem

H0 :X ∼ CN (0, σ2I)

H1 :X ∼ CN (SA, σ2I)
(2)

where a K-dimensional signal subspace is defined by an unknown
N×K complex matrix S whose columns are orthonormal vectors in
CN , and the element akm of the unknown K ×M complex matrix
A is the complex amplitude of the component of the signal received
at sensor m and in the subspace corresponding to the kth column
of S. Specifically, the generalized likelihood ratio (GLR) for this
rank-K detection problem is shown to be

e
N
σ2

∑K
i=1 λi

where λi, i = 1, ...,M are the eigenvalues of X†X arranged in non-
increasing order. In particular, for K = 1, the largest eigenvalue is
a sufficient statistic for the GLR.

The rank-one situation is typical in active radar involving a
single transmitter and in passive coherent radar exploiting a single
transmitter of opportunity. Thus invariance of the distribution of
the individual eigenvalues of X†X, and of the largest eigenvalue in
particular, is of interest for these applications to enable one channel
to contain a noiseless signal replica (for active radar) or a high-SNR
direct-path signal (for passive coherent radar) without altering the
detection thresholds corresponding to desired false alarm probabil-
ities. In certain cases, these thresholds can be derived analytically
using the known (if rather intractable) distributions of eigenvalues
of complex Wishart-distributed matrices [19, 20, 21].

3. INVARIANCE OF EIGENVALUE DISTRIBUTION

Consider the M ×M Gram matrix X†X = [gij ] of the normalized
signal vectors, as defined in Section 2. The objective of this section
is to show that the distribution of the eigenvalues of this matrix does
not depend on the distribution of one of the data vectors, xm, pro-
vided that xj ∼ CN [0, σ2I] for j 6= m and all of the vectors are
independent. There is no loss in generality in assuming m = 1; i.e.,
that the first channel is the one with arbitrary distribution. This is be-
cause xm and x1 can be exchanged in X via right multiplication by
a unitary permutation matrix P. The new Gram matrix P†X†XP is
unitarily similar to X†X, and thus has the same eigenvalues. Prop-
erties of Gram matrices are discussed in [22, Ch. 8].

Since the data vectors are normalized, the Gram matrix has the
form

G = X†X =


1 g12 · · · g1M
g∗12 1 · · · g2M

...
. . .

...
g∗1M g∗2M · · · 1


where g∗ij denotes the complex conjugate of gij . Let U be a unitary
matrix of dimension (M − 1)× (M − 1) such that

U†


1 g23 · · · g2M
g∗23 1 · · · g3M

...
. . .

...
g∗2M g∗3M · · · 1

U =

η2 0
. . .

0 ηM


Then denoting

V =


1 0 · · · 0
0
... U
0

 ,
yields

V †GV =


1 g12 g13 · · · g1M
g∗12 η2 0 · · · 0
g∗13 0 η3 · · · 0

... 0
. . . 0

g∗1M 0 · · · 0 ηM


Since V is unitary, V †GV has the same eigenvalues and eigenvec-
tors as G. The characteristic polynomial of V †GV is

P (λ) = det


1− λ g12 · · · g1M
g∗12 η2 − λ 0...

. . .
g∗1M 0 ηM − λ


Expanding the determinant upon the first row

C(λ) = (1− λ)
M∏
j=2

(ηj − λ)− |g12|2
M∏
j=3

(ηj − λ)

−|g13|2
∏
j 6=3

(ηj − λ)− · · · − |g1M |2
∏
j 6=M

(ηj − λ)
(3)

Note that

|g1j |2 =

∣∣∣∣〈 x1

||x1||
,

xj
||xj ||

〉∣∣∣∣ = | 〈x1,xj〉 |2

||x1||2 ||xj ||2

which is the MSC estimate for the data vectors x1 and xj .
If x2, . . . ,xM are CN [0, σ2I] random vectors that are each in-

dependent of x1, the invariance result for the distribution of the MSC
estimate proven in [15, 16] implies the distributions of the scalar
random variables |g1j |2 for j = 2, . . . ,M do not depend on the
distribution of x1 provided it is independent of each xj for j > 1.
From (3), the only potential dependence of the terms of C(λ) on
the distribution of x1 is through |g1j |2 for j = 2, . . . ,M . Thus the
distributions of all the coefficients of C(λ), and hence the distribu-
tions of the eigenvalues of G, do not depend on the distribution of
x1 if x1 is independent of the CN [0, σ2I] random vectors xj for
j = 2, . . . ,M .

The invariance of the distribution of the largest eigenvalue of G
with M = 3 was tested empirically as follows. In a 1000-trial and
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Fig. 1. Empirical distributions for the largest eigenvalues of 1000
3 × 3 Gram matrices used in a Kolmogorov-Smirnov goodness of
fit test. The solid line represents the CDF of the largest eigenvalue
statistic where there is independent white Gaussian noise on all three
channels, while the dashed line represents the CDF of the largest
eigenvalue when x1 is fixed and the other two channels are indepen-
dent white Gaussian noise.

a 100,000-trial Monte Carlo simulation, the largest eigenvalue of a
Gram matrix formed from a fixed deterministic complex vector x1

of lengthN = 256 and realizations of two iid CN [0, I] random vec-
tors x2 and x3 were collected (Case 1). The largest eigenvalue of a
Gram matrix formed from realizations of three iid CN [0, I] random
vectors were also collected (Case 2). The sample distributions of
these two sets of eigenvalues, shown in Fig. 1, were compared us-
ing a Kolmogorov-Smirnov goodness of fit test with a significance
threshold of 5%. With 1000 data, the test indicated the Case 1 data
and the Case 2 data were drawn from the the same distribution with
a confidence 89.72%. With 100,000 data, the confidence rose to
99.95%.

4. OPTIMALITY WITH ONE RECEIVER

Among the most studied active sensing situations entails a monos-
tatic radar that transmits a rank-one signal and detects echoes of that
signal in noise. The equivalence of three approaches to this problem
is discussed in this brief section.

In detecting a complex signal vector s that is known up to a
complex scalar gain in additive complex white Gaussian noise, the
most powerful invariant detector (normalized matched filter) has the
form

→ H1 =

{∣∣∣∣〈 s

||s|| ,
x

||x||

〉∣∣∣∣ > τ

}
where x is the received data and τ is a threshold [23]. Denoting
x1 = s and x2 = x, this becomes→ H1 = {|g12| > τ}. In the
MSC detector (1), the statistic is γ2(x1,x2) = |g12|2. The GLRT
detectors for rank-one signals in [12] and [18] are based on the
largest eigenvalue of X†X, which in this case is λmax = 1 + |g12|.

Since all three of these detection statistics are monotonically re-
lated, the corresponding detectors are equivalent and all share the

Fig. 2. Probability of detection (Pd) as a function of signal-to-noise
ratio for a fixed false alarm probability of Pf = 0.1 using two de-
tectors: (a) the matched filter for a signal with unknown phase and
(b) the detector based on the largest eigenvalue of the 2 × 2 Gram
matrix X†X with a noiseless signal replica on one channel (from
simulations). In each case, the data vector lengths are N = 64.
Close alignment of the matched filter curve (dashed) and the curve
for the detector based on the largest eigenvalue (solid) is consistent
with theoretically predicted equivalence of the detectors.

optimality properties known for the matched filter. This is supported
by the simulation results shown in Fig. 2.

5. APPLICATION TO ACTIVE SENSING

This section presents results from simulation of an active sensing
scenario with two receivers. A noiseless replica of the transmitted
signal s was used as x1, while x2 and x3 are independent, zero-
mean, unit-variance complex Gaussian noise vectors under H0. Un-
der H1, a signal component αms with αm > 0 for m = 2, 3 and
s realized from CN [0, I] was added to the noise on channels 2 and
3. The largest eigenvalue of X†X is used as the detection statistic.
This is illustrative of the active sensing scheme proposed for M − 1
receivers, where a noise-free signal replica is used as one channel in
and M -channel detector.

Fig. 3 shows results obtained with N = 64 and α2 = α3 = α
(i.e., equal SNRs on the two receiver channels). Data obtained un-
der H0 were used to determine thresholds to achieve a false alarm
probability Pf = 0.1. A normalized matched filter detector was ap-
plied to the transmitted signal replica x1 and the data from the first
sensor x2. From this, an SNR value of -12dB was determined to
be required for a probability of detection Pd = 0.9 with only one
receiver channel. This is illustrated by the dashed vertical and hor-
izontal lines in the figure. Finally, the largest eigenvalue detector
was applied to the noiseless replica and the two receiver channels
simultaneously. The required SNR value, with equal SNRs on both
receiver channels, required to obtain Pd = 0.9 and Pf = 0.1 was
-15dB. This is shown by the the dot in Fig. 3. Single receiver regions
of detectability lie to the right of the vertical dashed line and above
the horizontal dashed line. Processing both receiver channels simul-
taneously the largest eigenvalue coherence detector allows a signal
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Fig. 3. SNRs on two receiver channels needed to achieve Pf = 0.1
and Pd = 0.9 for infinite SNR on one channel. The dashed lines
show the SNR values (in dB) on one receiver channel required to
achieve this performance level with the matched filter. The marked
point shows the equal-channel SNR required to achieve this perfor-
mance with a three-channel coherence detector with a noiseless sig-
nal replica on one channel and using λmax as the detection statistic.

to be detected on both receiver channels when it is too weak to be
detected on either receiver channel by a matched filter.

Fig. 4 depicts receiver operating characteristic (ROC) curves ob-
tained using a seven-channel largest eigenvalue statistic in the active
sensing case with N = 64 and with equal SNRs on the six receiver
channels. The simulation used 1000 trials, each involving a complex
white Gaussian signal and additive complex white Gaussian noise
on channels 2–7.

6. CONCLUSION

Motivated by the roles played by the individual eigenvalues of the
Gram matrix of normalized data vectors in recently derived multiple-
channel detectors for signals of known rank, the distribution of the
eigenvalues of such a matrix have been shown to be invariant with
respect to the statistical behavior of one data vector provided that
the remaining data vectors contain only white Gaussian noise and
all the data vectors are independent. This result subsumes a 1997
invariance result for the determinant of the Gram matrix in [9]. The
invariance enables detection thresholds for detectors based on func-
tions of the eigenvalues to be used in situations where one channel
is known not to contain only noise, such as active sensing or pas-
sive coherent radar, without altering the false alarm probabilities.
An example using a three-channel coherence detector with a noise-
less signal replica and two channels of receiver data was delineated.
This example showed that there exists cases where such a configura-
tion enables a multiple channel detection even when single-channel
matched filters fail to detect on either receiver channel.

Fig. 4. Detection probability (Pd) versus false alarm probability
(Pf ) for a seven-channel largest eigenvalue detector with sequence
length N = 64. Channel one contains a noiseless signal replica,
while the remaining six channels have equal SNR values. The solid
line represents an SNR of -18dB, the dotted line represents an SNR
of -21dB, and the dashed line represents an SNR of -24dB.
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