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ABSTRACT

In this paper, we consider the statistical angular resolution
limit (ARL) on resolving two closely-spaced point sources in
array processing based on the framework of hypothesis test-
ing. A more general formulation of the linearized hypothesis
test is proposed and a new analytical expression of the ARL
is derived. The result is more general and its superiority over
previous work is verified via numerical simulations. For the
first time, we also investigate the case of two identical sources
where a second-order approximation is necessary. Numerical
simulations show that the theoretical result agrees with the
Cramér-Rao bound (CRB) criterion-based ARL with regard
to the relation between the resolution limit and the signal-to-
noise-ratio (SNR).

Index Terms— angular resolution limit, array processing,
hypothesis test, generalized likelihood ratio test, Wald test

1. INTRODUCTION

The ability of resolving two closely-spaced sources is a key
performance metric in a variety of applications and has been
widely studied in the literature [1–16]. Basically, there are
three different types of methods to treat this problem. The first
one is based on the null spectrum or the cross-ambiguity spec-
trum concerning a specific algorithm [5–9]. The second one
is based on estimation theory and adopts a Cramér-Rao bound
(CRB) based criterion [10,11]. The last one is based on detec-
tion theory and uses the hypothesis test formulation [12–15].
It is shown in [14] that a strong relation exists between the
angular resolution limits (ARLs) based on the CRB criterion
and the hypothesis test formulation.

In a recent work [1], the asymptotic resolvability of two
closely-spaced sources in the presence of known subspace in-
terference was investigated using a generalized likelihood ra-
tio test (GLRT) based method. A binary hypothesis test is
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formulated, in which the hypothesis H1 embodies the case
where two distinct signals are present with parameters ω1 and
ω2 respectively, and the hypothesis H0 represents the case
where the two sources are unresolvable and merge into a “s-
ingle” source with a center parameter ωc =

ω1+ω2

2 (i.e., at the
midpoint). However, it should be noted that where the two
sources coalesce does not necessarily lie at the midpoint as
the two source signals are not necessarily of equal strength.
Moreover, the analysis in [1] was based on a first-order ap-
proximation of the signal model. The case of two identical
sources where higher-order approximation is necessary was
not considered, and was believed to be untractable in [4]. In
this paper, we consider the derivation of the ARL based on the
hypothesis test formulation. The ARL in this context is de-
fined as the minimum angular distance that allows correct de-
termination of the number of sources for pre-specified proba-
bilities of detection and false alarm. For simplicity, we focus
on the interference-free case. Our contribution is two-fold: i)
A more general form of the hypothesis test is presented and
a new criterion, minimum probability of detection (MPD), is
proposed in determination of the parameter of interest in H0.
Exploiting these results, a new closed-form expression of the
ARL is derived. ii) The special case of two identical sources
is considered. We derive an ARL based on a second-order
approximation of the signal model.

The remainder of the paper is organized as follows. In
section II, we introduce the signal model. In section III-A,
we develop the new approach and derive the closed-form ex-
pression of the ARL for the general case. In section III-B, we
derive the ARL for the special case of two identical sources.
In section IV, we present numerical examples for the result-
s derived in Section III. Finally, we draw the conclusion in
Section V.

Notation: Throughout this paper, matrices are denoted by
bold italic capital letters, and vectors by bold italic lowercase
letters. Superscript (·)T and (·)H denote transpose and conju-
gate transpose, respectively. ∥ ·∥ denotes the Euclidean norm.
⊗ and ⊙ denote the Kronecker products and Hadamard prod-
ucts, respectively. IL stands for the L × L identity matrix.
R and C denote the set of all real numbers and the set of all
complex numbers, respectively. ℜ{·} denotes the real part of
a complex scale. Finally, (x)+ represents max(x, 0).
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2. SIGNAL MODEL

Consider a linear sensor array consisting of N elements with
known positions given by the vector d = [d1 d2 · · · dN ]T ,
d ∈ RN×1. Let s1 = [s1(1) s1(2) · · · s1(L)]

T and
s2 = [s2(1) s2(2) · · · s2(L)]

T denote two far-field and
narrow-band source signals in L snapshots, s1, s2 ∈ CL×1.
The measurement model is

y(l) = v(ω1)s1(l) + v(ω2)s2(l) + n(l) (1)

where v(ωk), k = 1, 2 denote the two linearly-independent
array steering vectors, v(ωk)=[ejωkd1 ejωkd2 · · · ejωkdN ]T.
ωk = 2π

ν cos θk is the parameter of interest, with θk denot-
ing the direction of arrival relative to the baseline of the ar-
ray and ν denoting the wavelength. The additive noise vec-
tor n(l) is modeled as independent and identically distribut-
ed (i.i.d.) circular symmetric complex Gaussian vector with
zero-mean and covariance matrix σ2IN , where σ2 is assumed
to be known. We assume that

∑N
i=0 di = 0 without loss of

generality, as for an arbitrary linear array, we can always spec-
ify an origin of coordinate to meet this condition. Further-
more, we assume that the two source signals are deterministic
and unknown. Letting z ,

[
y(1)T y(2)T · · · y(L)T

]T
and w ,

[
n(1)T n(2)T · · · n(L)T

]T , a compact form
for the signal model can be written as

z = V1s1 + V2s2 +w (2)

where V1 = IL ⊗ v(ω1) and V2 = IL ⊗ v(ω2).

3. THE DERIVATION OF THE ARL

This section is devoted to the derivation of the ARL. In section
III-A, a more general form of the hypothesis test formulation
is presented and a new closed-form expression of the ARL
for the general case is derived, in contrast to [1]. In section
III-B, the ARL for the special case of two identical sources is
deduced based on a second-order approximation.

3.1. New ARL for the General Case

Let hypothesis H0 denote the case where the two sources co-
alesce into a single signal with parameter ω0, and hypothesis
H1 the case where two signals are present. As with most
hypothesis test-based approaches (see e.g., [1] and [12]), we
assume that ω0 is pre-estimated. In contrast to the assumption
that ω0 = ωc in [1] where ωc = ω1+ω2

2 is the center parame-
ter, we define δ1 , ω0 − ω1 and δ2 , ω2 − ω0 without any
constraint on ω0. Consequently, the binary hypothesis test
formulation for this problem can be given by{

H0 : (δ1, δ2) = (0, 0)

H1 : (δ1, δ2) ̸= (0, 0)
(3)

where δ1 and δ2, viz., ω1 and ω2 are unknown to the detector.
We take advantage of the fact that δ1 and δ2 are small. A first-
order approximation of the signal model around (δ1, δ2) =
(0, 0) leads to a linearized (w.r.t. δ1 and δ2) form as follows

z = V0s+ + V̇0s− +w (4)

where V0 = IL ⊗ v(ω0), V̇0 = ∂V0

∂ω0
, s+ = s1 + s2 and

s− = δ2s2 − δ1s1. Consequently, the binary hypothesis test
can be rewritten as{

H0 : s− = 0, s+

H1 : s− ̸= 0, s+
(5)

The GLRT is the most commonly used solution for such a
problem. Exploiting the assumption that

∑N
i=0 di = 0, we

have V H
0 V̇0 = 0. The GLRT-based detector is then given

by [17]

TG =
zH V̇0

(
V̇ H
0 V̇0

)−1
V̇ H
0 z

σ2/2

H1

≷
H0

η1 (6)

where η1 denotes the detection threshold. The detection per-
formance of this detector is characterized by [17]

Pf = Qχ2
2L
(η1) (7)

Pd = Qχ′ 2
2L(λ)(η1) (8)

λ =
2∥d∥2

σ2
∥δ2s2 − δ1s1∥2 (9)

where Qχ2
2L

is the right tail probability for a central chi-
squared probability density function (PDF) with 2L degrees
of freedom, and Qχ′ 2

2L(λ) is the right tail probability for a
noncentral chi-squared PDF with 2L degrees of freedom and
noncentrality parameter λ.

Recall that ω0 is assumed to be pre-estimated. To gain
further insight, it is more appropriate to assume that the pa-
rameter of the single source, ω0, is asymptotically equal to
its maximum likelihood estimate (MLE) when actually two
noise-free source signals are present. asymptotic refers to ei-
ther N → ∞, L → ∞ or high signal-to-noise ratio (SNR)
value in the array processing context [18]. Under the maxi-
mum likelihood estimation, the single source signal most re-
sembles the two source signals and thus the decision is most
difficult to make. Therefore, we propose to select the val-
ue of ω0 that minimizes the probability of detection under a
pre-specified probability of false alarm instead. This is sim-
ilar to maximizing the minimum probability of error (MPE)
in the Bayesian framework [15]. Let δ = ω2 − ω1 denote the
sources separation. As Pd is a monotonically increasing func-
tion of the noncentrality parameter λ, we minimize λ under
the constraint δ1 + δ2 = δ, i.e.,

min
δ1,δ2

λ

s.t. δ1 + δ2 = δ

δ1, δ2 ∈ R

(10)
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Substituting δ1 = δ− δ2 into (9) and minimizing λ subject to
δ2 ∈ R, it follows that

λmin =
2∥d∥2

σ2

∥s1∥2∥s2∥2 −ℜ{sH1 s2}2

∥s1∥2 + ∥s2∥2 + 2ℜ{sH1 s2}
δ2 (11)

and the optimal ω0 is given by

ω̂0 = ωc +
|s2|2 − |s1|2

2(|s1|2 + |s2|2 + 2ℜ{sH1 s2})
δ (12)

For pre-specified Pf = pf and Pd = pd, we can ob-
tain the noncentrality parameter λ by solving the equation
Q−1

χ2
2L
(pf ) = Q−1

χ′ 2
2L(λ)

(pd), where Q−1
χ2
2L

is the inverse of Qχ2
2L

and Q−1
χ′ 2
2L(λ)

is the inverse of Qχ′ 2
2L(λ). Finally, from (11) we

obtain the ARL as follows

δ
(1)
lim =

√
λσ2

2∥d∥2
∥s1∥2 + ∥s2∥2 + 2ℜ{sH1 s2}
∥s1∥2∥s2∥2 −ℜ{sH1 s2}2

(13)

The ARL according to [1, eqn. (55)] in the absence of inter-
ference is given by

δ
([1,eqn.55])
lim =

√
2λ

∥d∥2
σ2

∥s1 − s2∥2
(14)

Comparing (13) with (14), it can be seen that the two ARLs
are inequivalent unless the two sources are of equal strength
(∥s1∥2 = ∥s2∥2).

3.2. ARL for the Special Case of Identical Sources

From (11) we can see that when s1 = αs2, α ∈ R\{0},
the first-order term vanishs and as a result (13) is inappro-
priate. Such a case should be considered separately. In this
subsection, we focus on the case of two identical sources (i.e,
s1 = s2). We assume that it is known to the detector that the
two sources are identical under H1. It should be noted that
a more practical problem would be without this assumption
but is much more complicated. We have addressed it and the
details will be given in a journal paper in preparation [19].

As it is reasonable to assume ω0 = ωc according to (12),
a second-order approximation of the signal model around ωc

gives

z = Ax+w (15)

with the definitions x , s1 + s2, A , IL ⊗ a(ωc, ζ),
a(ωc, ζ) , v(ωc) + ζv̈(ωc), ζ , δ2

8 and v̈(ωc) , ∂2v(ωc)
∂ω2

c
.

The binary hypothesis test formulation for the problem of res-
olution can be given by{

H0 : ζ = 0, x

H1 : ζ > 0, x
(16)

which is a one-sided test in the presence of nuisance param-
eters. The asymptotic PDF of the chi-squared distribution
for the GLRT-based detector does not hold for this problem.
Therefore, we resort to the Wald test instead and analyze its
asymptotic statistical characteristics, as the Wald test and the
GLRT were shown to have the same asymptotic performance
for many problems [17]. Define the unknown parameter vec-
tor as ξ = [xT ζ]T . The Wald test for the problem in (16)
can be computed by

Tw = ζ̂2
([

J−1(ξ̂1)
]
ζζ

)−1

(17)

where ζ̂ is the constrained (ζ̂ ≥ 0) MLE of ζ under H1, ξ̂1
is the MLE of ξ under H1, and

[
J−1(ξ̂1)

]
ζζ

is the value of
the inverse of the Fisher information matrix corresponding to
ζ calculated at ξ̂1, i.e., the CRB of ζ calculated at ξ̂1. Due to
the known positivity of ζ, (17) can be rewritten by a one-sided
Wald test

Tw = ζ̂

√([
J−1(ξ̂1)

]
ζζ

)−1

(18)

The CRB of ζ can be calculated via the “complexified” ap-
proach [11] and is given by

[J−1(ξ)
]
ζζ

=
σ2

2∥x∥2
N − 2∥d∥2ζ + ∥d⊙ d∥2ζ2

N∥d⊙ d∥2 − ∥d∥4
(19)

Let ζ̂u denote the unconstrained MLE of ζ under H1. One
can show that ζ̂u can be obtained by maximizing the quotient
of two quadratic functions. We can prove that ζ̂u almost al-
ways exits, and (ζ̂u)

+ is a reasonable constrained MLE of ζ.
Although the constrained MLE of ζ does not always exist, we
can still use (ζ̂u)

+ as a sub-optimum choice. Due to the space
limit, detailed explanation and the closed-form expression of
ζ̂u will be given in [19].

Let η2 > 0 denote the detection threshold. As Pr(ζ̂ >

η2) = Pr(ζ̂u > η2), following the derivation in [17, App.
6C], one can show that in the asymptotic sense, the detection
performance of the Wald test-based detector can be character-
ized by

Pf = QN (η2) (20)

Pd = QN

(
η2 − ζ

√(
[J−1(ξ0)]ζζ

)−1
)

(21)

where QN is the right-tail probability function for a standard
Gaussian random variable (zero mean and unit variance), and
ξ0 is the true value of ξ under H0. Finally, from (20) and (21)
we obtain the ARL as

δ
(2)
lim = 2

(
σ2

2∥s1∥2
N
(
Q−1

N (Pf )−Q−1
N (Pd)

)2
N∥d⊙ d∥2 − ∥d∥4

) 1
4

(22)

where Q−1
N is the inverse of QN and s1 can be replaced by s2

as s1 = s2.
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4. SIMULATION RESULTS

In this section, we present some numerical examples to illus-
trate the validity of our analytical results on the ARLs derived
in section III. The scenario is the following: the sensor ar-
ray is a uniform linear array with N = 10 sensors and the
inter-element spacing is d = ν

2 (i.e., di = ν
2 (−

N+1
2 + i), i =

1, · · · , N ). The number of snapshots is L = 100. The pre-
specified probabilities of false alarm and detection are pf =
0.01 and pd = 0.7, respectively. The SNRs of the two sources
are define as SNR1 = ∥s1∥2

σ2 and SNR2 = ∥s2∥2

σ2 . The total

SNR of the two sources is defined as SNRtotal =
∥s1∥2+∥s2∥2

σ2 .
For fixed SNRtotal = 50 dB in the case of two orthogonal

sources (sH1 s2 = sH2 s1 = 0), we plot the SNR1 versus δ(1)lim
(in unit of 2

ν ) for both the MPD criterion-based ARL and the
ARL in [1, eqn. (55)] in Fig. 1. It is shown that the latter de-
pends only on the total SNR, while the MPD criterion-based
ARL coincides with it only when the two sources are of equal
strength (SNR1 ≈ 47 dB) and increases as the difference of
source strength increases.
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2 ν
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[1, eqn.(55)]

Fig. 1. SNR1 versus δ(1)lim (in unit of 2
ν ) with fixed SNRtotal =

80 dB

A contour plot of (13) as a function of SNR1 and SNR2

in the case of two orthogonal sources is shown in Fig. 2. We
observe that for a fixed SNR1, the ARL decreases with SNR2

increasing and converges to a fixed limit that can be derived
from (13). (SNR1 and SNR2 are interchangeable here.)

The hypothesis test-based ARL given in (22) and the CRB
criterion-based ARL in [11] are compared in Fig. 3 for the
case of two identical sources. It can be seen that both ARLs
have the same behaviour regarding the relation between the
resolution limit and the total SNR: to increase the resolution
tenfold, the total SNR must be increased by 40 dB for both
methods.

5. CONCLUSION

In this paper, we study the ARL of two closely-spaced sources
in array processing based on the framework of hypothesis
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Fig. 2. Contour of δ(1)lim (in unit of 2
ν ) as a function of SNR1

and SNR2
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Fig. 3. ARL versus SNRtotal

testing. A general linearized hypothesis test formulation is
presented based on the first-order approximation of the sig-
nal model. Rather than assuming the parameter of the single
source ω0 to be the center parameter ωc, we propose a criteri-
on based on minimizing the probability of detection at a given
probability of false alarm to determine ω0. A new closed-
form expression of the ARL for this general case is obtained
by analyzing the worst case of the detection performance. Nu-
merical examples verify the superiority of the proposed ARL
over previous works.

We also investigate the special case of two identical
sources where a second-order approximation is necessary.
The hypothesis test in this case is a one-sided test in the pres-
ence of nuisance parameters. We resort to the Wald test and
the corresponding ARL is derived by analyzing the asymp-
totic performance of the Wald test-based detector. Numerical
simulations show that the derived ARL has the same behavior
as the CRB criterion-based ARL with respect to the relation
between the resolution limit and the total SNR.
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