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ABSTRACT

Sensor array measurements can be inverted to image a region
containing targets. The resulting amplitude image is usually
interpreted as target strength versus location, but often the im-
aged amplitude is a function of more parameters than just the
location. Sparse target regions can be imaged with dictionary
based modeling which relies on enumeration of each param-
eter with a dense grid. With many parameters, the dictionary
becomes too large, which leads to computational complexity
issues. This paper shows how additional parameters, such as
target orientation and symmetry, can be represented by a ten-
sor matrix instead of a simple amplitude. Furthermore, the
tensor can be treated as a continuous variable just like ampli-
tude, which enables extraction of multiple parameters, while
reducing the storage requirements of the dictionary, and re-
ducing off-grid modeling error.

Index Terms— Electromagnetic Induction (EMI), Low-
Rank Approximation

1. INTRODUCTION

Unknown object detection that includes detailed parameter
estimation is a challenging research problem. Locating land-
mines for disposal [1–5], radar imaging [6], and seismic pro-
cessing [7] are examples of sensor array imaging problems
that require parameter estimation. A very common, and very
easy solution to these problems is to build a parametric model
of all known variations of the objects of interest, make a set of
array measurements, and then pick out the model parameters
that match the measurements. This is also the basis for sparse
recovery and compressive sensing [8].

Matching pursuit is a way to solve these problems [9].
The parameter space usually needs to be discretized and enu-
merated for all reasonable target variations. There are two
common problems that arise with this approach. The first,
and most important, is that the more general the dictionary,
and the more unknown parameters included in the model, the
larger the dictionary becomes. It is common for the dictionary
to become unreasonably large. The second problem is that the
nature of a dictionary is discrete sampling of a continuous pa-
rameter space. This gives rise to the “off-grid” problem which

leads to modeling errors if the parameters of the measured ob-
ject do not fall exactly on the sampled space of the dictionary.

This paper will discuss how the detection of a target with
an electromagnetic (EM) field can be improved by using a
tensor representation instead of a simple amplitude. The ten-
sor matrix allows for a continuous approximation of some of
the target parameters, such as the orientation and target sym-
metry. This eliminates the need for discretization, and reduces
the dictionary size by approximately six orders of magnitude.
This also allows for a low-rank approximation algorithm to
be used since the symmetry and orientation of the magnetic
polarizability are described with the eigenvalues and eigen-
vectors of the simple 3×3 tensor matrix. This idea of using
a dictionary to solve for a continuous parameter is similar in
spirit to the method in [10]. The method proposed in this
paper differs from previous work [3] which assumed the ori-
entation is known. Ho and Gader did not include orientation,
but showed that changes in orientation affect the location es-
timates [11]. The work in [4] discretizes the orientation space
and also assumes that every target can be generalized with
dipole symmetry. Özdemir et al. solved the problem via a 6-
D nonlinear least squares method instead of solving directly
for the tensor representation with a semidefinite program [12].

This paper will examine the advantages of using the ten-
sor amplitude representation in the context of magnetic ob-
jects measured with electromagnetic induction (EMI) sensors.
Section 2 will explain how the model is built; Section 3 will
show how this model leads to a tractable optimization prob-
lem; Sections 4 and 5 will give some preliminary results and
concluding remarks, respectively.

2. MODEL SETUP

The model used for this problem can be found in [3, 4, 12].
The measurement set up consists of one transmitter and three
receive coils (Fig. 1) that collect frequency response samples.
The model used in [12] operates directly on the frequency
domain model of the measurement response. For this paper,
the model given in (1) uses the discrete spectrum of relaxation
frequencies (DSRF) domain for target model simplification,
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Fig. 1. Measurement device setup

and reduced dictionary size [13].

rlsc (lt,α,λ) = C0g
T
c (l)R(α) diag(λ)RT (α)f(l) (1)

Only a single relaxation target will be discussed in this pa-
per to simplify the presentation. Some additional details of
the advantages of going to the DSRF domain for this problem
can be seen in [4]. Equation (1) gives the EMI response of a
target with magnetization polarizability λ, rotated by α with
a 3×3 rotation matrix R, at target location lt, and received
with coil c at sensor location ls. α consists of the Euler rota-
tion angles, (φ, θ, ψ); l, the distance between ls and lt, con-
sists of the three relative spatial dimensions (x, y, z); diag(λ)
gives the magnetic polarizability of the target on its principal
axes. gc(l) and f(l) are vectors containing the relative spatial
components of the magnetic field on the receive coils and the
transmit coil respectively. C0 is a multiplicative constant that
is explained fully in [12, 13].

Özdemir et al. [12] showed how this model can be cleverly
rewritten into the dictionary model

rc(lt,α,λ) = Ac(lt,α)λ (2)

by stacking the sensor measurements into a column of data.
Now the measurements received at each head are stacked in
order to use the relative amplitudes of the head information to
localize the target in cross range, y.

r(lt,α,λ) =

 A1(lt,α)
A2(lt,α)
A3(lt,α)

λ = A(lt,α)λ. (3)

An example of r(lt,α,λ) can be seen in Fig 2.
A problem starts to arise when A is enumerated for all

possible lt and α. A reasonable size problem would have
a 30×30×30 spatial grid and a 90×180×180 angle grid.
A would then become size NcNls×NxNyNzNφNθNψ ≈
90×1011, which can easily become unreasonable for per-
sonal computers or hand-held field devices.

The model from (1) can be slightly changed to address this
complexity issue. First, the middle terms can be combined
into

T (α,λ) = R(α) diag(λ)RT (α) =

 t1 t4 t6
t4 t2 t5
t6 t5 t3

 , (4)
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Fig. 2. Measurement vector

a symmetric positive semidefinite (PSD) matrix. Also, it is
important to notice that R(α) diag(λ)RT (α) is the eigen
decomposition of T . Meaning that if T is solved for di-
rectly, R and λ are easily recovered. This is significant, be-
cause solving for T only involves 6 unknowns, instead of the
3NφNθNψ ≈ 106 (where 3 corresponds to the length of λ).
The model then becomes

rlsc (lt,α,λ) = C0g
T
c (l)T (α,λ)f(l)

= C0(t1g
T
c (l)

 1 0 0
0 0 0
0 0 0

 f(l)

+ ...+ t6g
T
c (l)

 0 0 1
0 0 0
1 0 0

f(l))
= t1a

1
c(l) + t2a

2
c(l) + ...+ t6a

6
c(l)

= ac(l)t,

where ac is a 1×6 vector and t is a 6×1 vector. The same
steps done in (3) can now be taken to get the measurement
vector

r(lt,α,λ) = A(lt)t, (5)

where A is now a NcNls×6 matrix. The model now has the
orientation information embedded in the tensor, allowing for
continuous orientation to be extracted without expanding the
size of the dictionary.

3. OPTIMIZATION

Once the model has been created with the desirable proper-
ties, a technique to solve for the unknowns is needed. As-
suming that there is some kind of modeling error, i.e., off grid
target location, and measurement noise, a simple noise term
η should be added to the measurement model

r(lt,α,λ) = A(lt,α)t+ η. (6)
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3.1. Multiple Small Optimizations

First, assume that the location of the target is known. Then
the only unknown parameters in the problem are the orienta-
tion and magnetic polarizability of the target on its principal
axes. The symmetric tensor matrix is written as the sum of 6
symmetric basis matrices

T (α,λ) = t1

 1 0 0
0 0 0
0 0 0

+ ...+ t6

 0 0 1
0 0 0
1 0 0

 , (7)

where the vector t has the amplitudes necessary to rebuild the
larger tensor matrix. It is important to remember that T (α,λ)
has the important properties, not the vector t. In order to get
a close fit, the optimization should include a constraint on
the residual. But to keep the eigenvalues, which are the mag-
netic polarizability of the target on its principle axes, from be-
coming unreasonably large, a constraint on them is needed as
well. The eigenvalues can be constrained by minimizing the
trace of T (α,λ) because T (α,λ) is a square matrix. This
type of problem can be solved with a semidefinite program
(SDP) [14]. The optimization problem setup becomes

min tr(T (α,λ))

s. t. T (α,λ) � 0 (8)
‖ r(lt,α,λ)−A(lt)t ‖2< ε,

and with a little reorganization can be passed into a solver
such as CVX [15]. T (α,λ) � 0 represents the PSD con-
straint. The residual constraint ε is set by the noise level in
the system and not due to the discretization of the dictionary.
This is an advantage since dictionary elements that are located
close together tend to look very similar to one another, gener-
ally with small amplitude changes being the only difference.
This will be addressed in the next subsection.

The optimization problem in (8) will provide the tensor
information for the target, giving the orientation and magnetic
polarizability, which will aid in finding the location. Now that
there is a set up to solve for the tensor information assuming
the location is known, the problem needs to be expanded to
find an unknown location. The minimization in (8) could be
carried out for each possible spatial grid location (lt), and the
residual evaluated

Res(lt) =‖ r(lt,α,λ)−A(lt)t ‖2 . (9)

If there is a single target present, the minimum residual would
provide the location estimate. If there were more than one
single target, a matching pursuit type technique could be run
to iterate and extract the target locations.

3.2. Single Large Optimization

The problem in the previous subsection can be solved with a
single optimization. This will allow for the convex optimiza-
tion problem to use the inherent sparsity in the number of tar-
gets to its advantage in finding the location. First, the model

dictionary needs to be expanded to account for the unknown
locations. The A(lt) matrices for the Nlt possible target lo-
cations are concatenated into a block matrix

A = [A(1) | A(2) | ... | A(Nlt)]. (10)

The vector t now becomes a length 6Nlt sparse vector, and

T =


T 1(α,λ) 0 0 0

0 T 2(α,λ) 0 0

0 0
. . .

...
0 0 · · · TNlt

(α,λ)

 . (11)

All of the previous properties still apply, T is symmetric,
T�0, and can be constructed directly from the solution vector
t. The fact that T�0 follows straight from the fact that each
T lt(α,λ)�0. It is obvious in the block diagonal structure
of T , that the eigenvalues of T are the enumeration of all the
eigenvalues from all T lt . It follows directly that if there exists
a T lt that has a negative eigenvalue, then T must also have
the same negative eigenvalue. Also, if T contains at least one
negative eigenvalue, then there must exist at least one T lt that
has the corresponding negative eigenvalue. This proves that
T�0 if and only if all T lt�0. Now (8) becomes the expanded
convex optimization problem

min tr(T )

s. t. T � 0 (12)
‖ r(lt,α,λ)−At ‖2< ε.

Using the trace of T is a relaxation of the rank minimiza-
tion problem and will take advantage of the fact that T is go-
ing to be very low rank, generally between one and six [16].
There maybe some concern that this problem could become
extremely large, since T is of size 3NxNyNz×3NxNyNz .
This is not a problem, since T is only a five diagonal, sym-
metric matrix, and the trace is only concerned with the main
diagonal. This allows many storage efficient techniques to
be used to keep complexity down. This low-rank matrix ap-
proximation is in effect enforcing a sparsity constraint on the
number of targets. If there is only one target, and there is no
noise, this technique and the one from the previous subsection
would provide identical results. Since those assumptions are
not true in practice, noise must be dealt with.

The noise must be bounded by the coherence of the dic-
tionary grid. The tensor representation technique avoids the
need to grid the orientation parameters, but it does not address
the need for a discretized grid in the spatial location dimen-
sions. There could quite possibly be a way to eliminate the
need for a location grid as well, but it has not been addressed
here. This leads to an issue of dictionary coherence in the lo-
cation grid. This is the euclidean distance between dictionary
vectors corresponding to similarly oriented targets which is
defined for this problem by

dij =‖ r(i,α,λ)− r(j,α,λ) ‖2 . (13)
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For this particular dictionary, dij is very small with respect to
the amplitude of each signal if i and j are close. For a par-
ticular orientation, dij/2 ≥‖ η ‖2. This means the norm of
the noise vector must be less than half of the smallest distance
between two dictionary locations. This should be taken into
consideration when setting up the grid for the possible loca-
tions, as well as in the design of the measurement system.

4. RESULTS

Two simple experiments were run to test the method. The
simulation treats a very small problem, but can be expanded
easily. Only two spatial dimensions are considered, y and z.
Ny=7 at 2cm spacing, Nz=8 with 1cm spacing. Also, only
φ and θ are used for orientation. A consideration for setting
up these problems is how to choose the ε from (12). The SNR
for each experiment is set at 35dB. For these experiments, a
starting point for ε is selected to be a simple estimate of the
noise. It is reasonable to assume that much of the downrange
measurements will contain no target, so the norm is taken in
this estimated target-less area to get the estimated noise am-
plitude. Then an L-curve, like the one in Fig. 3, is made by
varying ε below and above the starting ε. A point is then se-
lected at the knee of the curve to find the best solution.

The first experiment consists of a single target located
at (y, z) = (0, 6.5) cm, with a 2-dimensional EM symme-
try λ = (.5, 0, 1), oriented at (φ, θ) = (0◦, 22.5◦), which is
represented by the tensor

T =

 0.92 0.38
0 0

−0.38 0.92

[ 0.5 0
0 1

] 0.92 0.38
0 0

−0.38 0.92

T

written as an eigenvalue expansion. The estimated tensor cor-
responded to the correct location, and the estimated tensor is

T̂ =

 0.90 0.42
0.03 0.00
−0.42 0.90

[ 0.48 0
0 1

] 0.90 0.42
0.03 0.00
−0.42 0.90

T .
The λ are normalized such that the largest eigenvalue is one.
The estimation of the tensor is quite accurate. λ(1) has less
than a 5% error, and λ(2) is exact. The orientation estimate is
also very accurate. By using simple trigonometry, the angles
of the eigenvectors (rotation matrices) are within 4◦ of the
actual orientation.

The second experiment consists of two targets located at
(y1, z1) = (0, 6.5) cm and (y2, z2) = (−6, 7.5) cm, with EM
symmetries λ1 = (0, 0, 1) and λ2 = (1, 0, 0), both are ori-
ented at (φ, θ) = (45◦, 22.5◦), and represented with tensors

T 1 =

 0.27
−0.27
0.92

 [ 1
]  0.27
−0.27
0.92

T ,
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Fig. 3. L-curve for ε selection

and

T 2 =

 −0.650.65
0.38

 [ 1
]  −0.650.65

0.38

T ,
The estimated tensor corresponded to the correct locations
again, and the estimated tensors are

T̂ 1 =

 0.28
−0.26
0.92

 [ 0.98
]  0.28
−0.26
0.92

T ,
and

T̂ 2 =

 −0.640.65
0.39

 [ 1
]  −0.640.65

0.39

T .
Again, the estimates of the tensors are quite accurate: λ1 has
less than a 2% error, and λ1 is exact. The orientation estimate
was even more accurate than the first simulation with both
targets being oriented within 1◦ of the actual orientation.

5. CONCLUSIONS

An algorithm has been presented to accurately, and efficiently
localize and characterize a subterranean magnetic object by
directly extracting its 3-dimensional tensor amplitude. The
advantages include: large reduction in computer storage, the
ability to overcome sensor insensitivity, and the ability to min-
imize modeling error by not discretizing the orientation pa-
rameter space.
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