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ABSTRACT
This paper presents a novel digital blind calibration method
for time interleaved analog to digital converters (TIADCs). A
simple cost function based on the cross-correlation of channel
statistics is used to derive a steepest descent algorithm for the
compensation of timing mismatch errors. Instead of calibrat-
ing the timing mismatches independently for each channel,
only one adaptation channel needs to be calibrated within a
closed loop. The calibration of the rest of the channels can
be coordinated according to a scaling relationship established
during an initialization stage. As a result, both the compu-
tational complexity and convergence speed of the proposed
algorithm can be improved significantly with little loss in cal-
ibration performance.

Index Terms— Farrow structure, fractional delay filter,
steepest descent

1. INTRODUCTION

Analog-to-Digital Converters (ADCs) serve as the gate con-
necting the real world with today’s digital world. There has
always been an increasing need for faster and more accurate
ADCs in modern communication systems. Similar to what
has happened with multi-core CPUs in the PC industry, paral-
lelism is the most natural way to extend the existing technol-
ogy for ADCs. The idea of the time interleaved ADC system
(TIADC) is very easy to state. A group of slower ADCs takes
samples alternately and the data from all channels are mul-
tiplexed into a single output stream with a faster equivalent
sampling speed.

Figure 1 shows the basic structure of an ideal TIADC sys-
tem. The input analog signal is sampled at frequency Fs/M
in each channel, where M is the number of channels. The
phase of each channel ADC is separated by 2π/M . The sam-
pled data from the M channels are multiplexed to yield a dig-
ital output y(n) at an equivalent sampling frequency of Fs.

The foregoing comments assume ideal models, but there
are always mismatch errors between channels due to the ADC
manufacturing process variations, environment variables and
clock jitter. Three kinds of mismatch errors in a TIADC sys-
tem are significant:
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Fig. 1. An ideal TIADC system

• Offset error om: The ground voltage level of each ADC
is not exactly identical.

• Gain error gm: The analog gain differs among ADCs.

• Timing error ∆t,m: The relative clock delays between
pairs of ADCs are not all identical.

Earlier work [1, 2] gives a detailed analysis of the channel
mismatch effects in TIADC systems. For a sinusoidal input
signal at frequency f0, gain and timing mismatch errors will
cause spectral distortions at f0 ± m

M Fs, m = 1, ...,M − 1
while offset mismatch errors introduce distortions at m

M Fs.
As a result, the overall system suffers a reduced Signal to
Noise plus Distortion Ratio (SINAD) and Spurious Free Dy-
namic Range (SFDR).

The correction of mismatches can be accomplished in ei-
ther the analog [3] or digital domain [4, 5]. Because of their
flexibility, digital compensation methods are more attractive
and have been heavily studied. Digital calibration methods
can be classified into two categories. Active calibration meth-
ods [6] send a known pilot signal to the TIADC system and
estimate the mismatches according to the digital output. As
accurate and fast as these methods are, they unavoidably in-
terrupt the normal ADC operation which is unacceptable in
most real-time applications.

Blind calibration methods [7, 8, 9], on the other hand, per-
form calibration while the TIADC is in normal operation. The
blind assumption doesn’t mean that we are completely agnos-
tic about the input signal. Different algorithms make certain
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assumptions about properties of the input signal. As a result,
various limitations exist, e.g., oversampling the input signal
[4], or restricting the number of channel numbers to two [8],
or four [9]. Computation can also be an issue, e.g., [7] pro-
poses an adaptive algorithm based on minimizing the mean
square difference between the outputs of all adjacent chan-
nels, but it is computationally too expensive to be practical.

This paper proposes a coordinated blind adaptive calibra-
tion algorithm to compensate the timing mismatches in the
TIADC system. Figure 2 shows the block diagram of the pro-
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Fig. 2. The proposed calibration scheme

posed digital calibration technique. Channel 0 is set as the
reference channel. Farrow-structured fractional delay (FD)
filters [10, 11] are applied to correct the timing mismatches
in a continuous manner without an online filter design pro-
cess. Offset and gain mismatches are relatively easy to es-
timate and compensate—these are corrected sequentially by
the offset/gain compensation module. The timing compen-
sation module requires a closed loop adaptation scheme, but
we show that only one channel must be fully adapted. This
simplification relies on a normalized relationship among the
timing mismatches of each channels with regard to an adapta-
tion channel that can be established after an initialization step.
As a result, the overall computational complexity is reduced
significantly and the convergence speed is accelerated as well.

2. ALGORITHM DERIVATION

2.1. Blindness assumption of the input signal

Suppose the input signal x(t) is a zero mean, ergodic, wide
sense stationary process, the sampled signal at channel m is

xm[n] = om + gmx((nM +m)Ts + ∆t,m), (1)
n = 0, ..., N − 1, m = 0, ...,M − 1,

where om, gm,∆t,m are the offset, gain, and timing mis-
matches at channel m, N is the number of samples in each
channel and M is the number of channels.

2.2. Offset/gain mismatch estimation

The offset mismatches can be estimated according to

E[xm(n)] = om m = 0, ...,M − 1. (2)

After compensating the offset mismatches, the gain mis-
matches can be estimated according to

gm = g0

√
E[x2m[n]]

E[x20[n]]
, m = 1, ...,M − 1, (3)

where the gain g0 is assumed to be the gain in channel 0,
which is set as the reference channel. In other words, we can
only estimate the relative gains for channel 1 to M − 1.

2.3. Timing mismatch estimation

Once the gains are estimated and corrected to g0, the most
difficult task remains—timing mismatch estimation and com-
pensation. In this section, a cost function that equals the
sum of squared cross-correlation differences between pairs of
adjacent channels is defined. When the timing mismatches
are small compared to the sampling interval, an approximate
scaling among the timing mismatches at each channel can be
established by observing the cross-correlation of consecutive
channels. In the adaptation process, a steepest descent algo-
rithm is executed to adjust the timing mismatch at a single
adaptation channel, leaving the timing mismatches in the rest
of the channels to be adjusted in a coordinated manner ac-
cording to the scaling relationship established beforehand.

According to assumption on the input signal, we have

E[xm[n]xm−1[n]] =g20E[x((nM +m)Ts + ∆t,m) (4)
x((nM +m− 1)Ts + ∆t,m−1)]

=g20Rx(Ts + ∆t,m −∆t,m−1),

where Rx(τ) is the unknown auto-correlation function of
x(t). When the timing mismatch differences are very small,
i.e., |∆t,i − ∆t,j | � Ts, ∀i6=j, we can approximate
Rx(Ts + ∆t,m − ∆t,m−1) according to a first-order Tay-
lor expansion:

E[xm[n]xm−1[n]] ≈g20Rx(Ts)

+ g20R
′
x(Ts)(∆t,m −∆t,m−1). (5)

Next, we can define a sub-cost function as

Jm−1 =E[xm[n]xm−1[n]]− E[xm−1[n]xm−2[n]] (6)

≈g20R′x(Ts)(∆t,m − 2∆t,m−1 + ∆t,m−2),

m = 2, ...,M − 1,

and we include the last channel by invoking wraparound

JM−1 =E[x0[n+ 1]xM−1[n]]− E[xM−1[n]xM−2[n]] (7)

≈g20R′x(Ts)(∆t,0 − 2∆t,M−1 + ∆t,M−2).

To unify the definition of (6) and (7), we can redefine the sub-
cost function as

Jm−1 = E[xm mod M [n+
⌊m
M

⌋
]xm−1[n]] (8)

− E[xm−1[n]xm−2[n]] m = 2, ...,M.
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Then we define the overall cost function as

J =

M−1∑
m=1

J2
m, (9)

which is minimized to zero when all the timing mismatches
are equalized. An adaptive algorithm to update all channels
can be derived from the gradient of the cost function. Sup-
pose we apply a delay ∆̂t,m to the signal xm[n] by means
of digital fractional delay filters so that the new delay be-
comes ∆t,m − ∆̂t,m. By denoting the compensated signal
sequence as x̂m[n] and the new sub and overall cost functions
after compensation as Ĵm and Ĵ , we can evaluate the gradient
of Ĵ according to (6, 7, 9):

∂Ĵ

∂∆̂t,m

= − g20R′x(Ts)(Ĵm+1 − 2Ĵm + Ĵm−1) (10)

m = 1, ...,M − 1, Ĵ0 = 0, ĴM = 0.

The exact values of R′x(Ts) and g0 are unknown. How-
ever, as long as we can determine the sign of R′x(Ts), we can
still determine the direction of the gradient which is sufficient
for the steepest descent algorithm to work.

Suppose x(t) is a random process bandlimited to [−Fs

2 ,
Fs

2 ],
we can show that R′x(Ts) ≤ 0. According to the steepest de-
scent algorithm, we can update the estimate of ∆̂t,m by

∆̂t,m[k + 1] = ∆̂t,m[k]− µm(Ĵm+1[k]− 2Ĵm[k] (11)

+ Ĵm−1[k]) m = 1, ...,M − 1,

where k is the update step and µm is a positive step size.
Therefore, for each update step k, we need to collect N sam-
ples of xm(n) for all M channels, evaluate Ĵm, and update
the delay estimates according to (11).

By assuming that the timing delays are constant during
the adaptation process, we can significantly simplify the up-
date scheme by the following coordinated adaptive algorithm.
According to (6) and (7), we have

γ1 =
J1
J2
≈ ∆t,2 − 2∆t,1

∆t,3 − 2∆t,2 + ∆t,1
(12)

γm−1 =
Jm−1
Jm

≈ ∆t,m − 2∆t,m−1 + ∆t,m−2

∆t,m+1 − 2∆t,m + ∆t,m−1

m = 3, ..,M − 2

γM−2 =
JM−2
JM−1

≈ ∆t,M−1 − 2∆t,M−2 + ∆t,M−3

−2∆t,M−1 + ∆t,M−2

Therefore, we haveM−2 equations andM−1 variables ∆t,1

to ∆t,M−1. Without loss of generality, we can set channel
#1 as the reference channel. Denote αm as the normalization
coefficient at channelmwith respect to the reference channel,

∆t,m = αm∆t,1 m = 2, ...,M − 1. (13)

We can rewrite (12) as

Aα = b, (14)

where,
α = [α2, α3, ..., αM−1]T , (15)

b = [−γ1 − 2, 1, 0, ..., 0]T , (16)

A is a band (2,1) matrix whose element aij is zero when j <
i− 2 and j > i+ 1. The diagonal row vectors of A are

a1 =[−2γ1 − 1, γ1], (17)
a2 =[2 + γ2,−2γ2 − 1, γ2], (18)
am =[−1, 2 + γm,−2γm − 1, γm], (19)

m = 3, ...,M − 3, (20)
aM−2 =[−1, 2 + γM−2,−2γM−2 − 1]. (21)

After resolving α during the initialization stage, we can
coordinate the delay compensations as

∆̂t,m = αm∆̂t,1 m = 2, ...,M − 1, (22)

As a result, we just need to focus on adapting the time
delay ∆̂t,1 on channel 1, the delays for the other M −2 chan-
nels can be calculated directly from (22) instead of adaptively
updated using (11). In other words, we only need to keep
track of the data sequences x0[n], x1[n] and x2[n]. Not only
does the proposed algorithm reduce computational complex-
ity, but it also accelerates the convergence speed. Imagin-
ing the overall cost function Ĵ as a function of ∆̂t,m in a
multi-dimensional space, the proposed algorithm will follow
a straight line from the initial choice of ∆̂t,m to the optimality
location of Ĵ , which is the shortest path available.

3. SIMULATION EXAMPLE

Two examples (for 3 channels and 8 channels) of TIADC tim-
ing mismatch calibration with the proposed coordinated adap-
tation algorithm are shown in Fig. 3. The timing compensa-
tions ∆̂t,m are updated once every N = 5000 samples for
each channel. The equivalent overall sampling frequency is
Fs = 1 GHz. The input multi-sine signal has 3 components
whose frequencies, amplitudes and phases are unknown. The
timing mismatches are assumed to be uniformly distributed
over [−0.1Ts

M , 0.1Ts

M ], where M is the number of channels.
Figure 3(a-c) shows a three channel (M = 3) TIADC ex-

ample. The step size is set as µm = 0.5Ts. The convergence
path on the overall cost function surface in Fig. 3(a) follows a
straight line from the initial choice of ∆̂t,1 and ∆̂t,2 towards
their true values when the coordinated algorithm is used. In
contrast, the convergence path of the independent adaptation
scheme follows a path that is normal to the contour of the
overall cost function. Because of the shortened convergence
path, the convergence speed of the cost function and estimated
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Fig. 3. TIADC timing mismatch compensation performance:
(a) convergence paths on the cost function surface forM = 3.
(b) cost function convergence speed for M = 3. (c) conver-
gence of the timing mismatch estimation in one channel, for
M = 3. (b) cost function convergence for M = 8.

timing mismatches versus the number of iterations can be ac-
celerated by a factor of 2.5 as seen in Fig. 3(b-c).

Figure 3(d) compares the convergence speeds for an eight-
channel TIADC example where the input signal is still the
same multi-sine signal. The step size is set as µm = 0.2Ts.
In this case, the speed up of the convergence is about a factor
of 2 for the proposed coordinated adaptation algorithm.

Figure 4 shows a Monte Carlo experiment on the perfor-
mance of the proposed algorithm. The input multisine signal
has 3 sinusoidal components whose frequencies, amplitude
and phases are unknown. The timing mismatch differences
∆t,i − ∆t,j ,∀i 6= j are assumed to be uniformly distributed
in [−β Ts

M , β Ts

M ], where M = 8 is the number of channels. The
step size of the proposed algorithms is set as µ = β Ts

M . The
number of iterations is set to 10.

The normalized timing mismatch compensation RMS er-
ror is defined as

∆RMSE =
M

Ts

√√√√ 1

M − 1

M−1∑
m=1

(∆t,m − ∆̂t,m)2. (23)

The proposed algorithms are claimed convergent if the com-
pensated overall cost function Ĵ is smaller than the uncom-
pensated cost function J .

Figure 4(a) shows the relationship between ∆RMSE and
β. Each point on the figure is averaged over 1000 experi-

ments. For both the independent and coordinated adaptation
schemes, ∆RMSE increases linearly with regard to β, which
suggests that performance of the proposed algorithms de-
grades when the timing mismatch differences |∆t,i − ∆t,j |
increase. The independent adaptation algorithm is more ro-
bust as it is guaranteed to converge over the entire range. By
contrast, the coordinated adaptation algorithm may diverge
when the small timing mismatch difference assumption is
not valid. Figure 4(a) evaluates ∆RMSE only when both algo-
rithms converge. Figure 4(b) shows the probability of conver-
gence for the coordinated adaptation algorithm. Combining
4(a) with (b), we can conclude that both algorithms exhibit
similar timing compensation performance. The independent
adaptation algorithm is more robust than the coordinated
adaptation algorithm in terms of convergence. However,
when the coordinated adaptation algorithm converges, it re-
duces the overall computational complexity by a factor of
M − 2. As a result, we can apply the coordinated adapta-
tion algorithm initially. Should it diverge, we can switch to
the independent adaptation algorithm for a few iterations to
narrow down the compensated timing mismatch differences,
which increases the likelihood that the coordinated adaptation
algorithm will converge thereafter.
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Fig. 4. Monte Carlo experiments on the performance of the
proposed algorithms after 10 iterations. (a) normalized tim-
ing mismatch compensation RMS error as a function of the
timing mismatch difference variation range, (b) probability of
convergence of the coordinated adaptation algorithm.
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