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ABSTRACT

Measurements with unknown time delays are common in different
applications such as microphone array, radio antenna array calibra-
tion, where the sources (e.g. sounds) are transmitted in unknown
time instants. In this paper, we present a method for estimating un-
known time delays from Time-Difference-of-Arrival (TDOA) mea-
surements. We propose a novel rank constraint on a matrix depend-
ing on the measurements and the unknown time delays. The time de-
lays are recovered by solving a truncated nuclear norm minimization
problem using alternating direction method of multipliers (ADMM).
We show in synthetic experiments that the proposed method recovers
the time delays with good accuracy for noisy and missing data.

Index Terms— Time Delay Estimation, Time-Difference-of-
Arrival, Nuclear Norm, Self-Calibration

1. INTRODUCTION

Localization based on sound, ultra-sound, radio or signal strength
has been studied in numerous applications (beamforming, speaker
tracking, crime fighting, indoor localization etc). However, most
previous works have been focused on localization of e.g. a sound
source using a calibrated detector array, i.e. the positions of either
transmitters or receivers are assumed to be known or are measured
via external devices [1–5]. In most settings, both the positions of
the transmitters and receivers could be difficult to obtain, and the
transmitters are not synchronized. In this paper, we focus on the
time-difference-of-arrival (TDOA) self-calibration problem, i.e. the
problem of determining the positions of a number of receivers and
transmitters as well as the unknown time delay for each transmit-
ter, given all receiver-transmitter distances. This is relevant in com-
mon settings e.g. microphone arrays, given recordings of sounds
(unsynchronized) emitted at unknown locations, to microphones at
unknown positions, determine both sound emission positions and
microphone locations. Similar scenarios are encountered also for
other types of measurements e.g. ultra-sound or radio. Manual syn-
chronization for transmitters can be both difficult and expensive in
general. Therefore, efficient and accurate estimation of time delays
using only TDOA measurements is of interest.

In this paper we present a method for time delay estimation of
TDOA network calibration problem for general dimensions. We uti-
lize a rank constraint on a matrix that is linear in the unknown time
delays and propose a new method to estimate the time delays by
minimizing a cost function, using nuclear norm minimization. As
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the rank function is non-convex and discontinuous, some previous
work [6] shows that the nuclear norm is the best convex approxima-
tion of the rank of a matrix over the unit ball of matrices with norm
less than one. So an alternative approach to the rank minimization is
to minimize its nuclear norm. However, it is shown in [7] that min-
imizing the nuclear norm will in general minimize all the singular
values simultaneously, which deviates from the goal to minimize the
number of non-zero singular values, i.e. the rank of a matrix. To
better approximate the rank, one should instead minimize the sum
of k smallest singular values by adding a regularizer in the nuclear
norm minimization. Singular value thresholding in [8] is a simple
yet effective way based on the nuclear norm heuristics and we use
that as a subroutine in our optimization scheme.

2. THE TIME DELAY SELF-CALIBRATION PROBLEM

Let {ri}, i = 1, . . . ,m and {sj}, j = 1, . . . , n be the spatial co-
ordinates of m receivers and n transmitters, respectively. For mea-
sured time of arrival tij from transmitter ri and receiver sj , we have
v(tij − tj) = ‖ri − sj‖2, where tj is the unknown time delay for
each transmitter, and v is the speed of measured signals (assumed to
be constant). We will in the sequel work with the distance measure-
ments dij = vtij and time delays oj= vtj . The TDOA and TOA
calibration problems can then be defined as follows.

Problem 1 (Time Delay Estimation for Time-Difference-of-Arrival
Network) Given relative distance measurements fij determine the
time delays oj , j = 1, . . . , n for unknown receiver positions ri,
i = 1, . . . ,m and transmitter positions sj , j = 1, . . . , n such that
fij = ‖ri − sj‖2 + oj .

Problem 2 (Time-of-Arrival Network Calibration) Given absolute
distance measurements dij determine receiver positions ri , i =
1, . . . ,m and transmitter positions sj , j = 1, . . . , n such that dij =
‖ri − sj‖2.

In this paper, we focus on solving the time delays as a separate
problem to reconstructing the sensor locations i.e. {ri} and {sj}.
Once the time delays {oj} are known or estimated, we can solve the
TDOA problems by converting them to TOA problems i.e. by setting
dij = fij − oj . This strategy is also utilized in [9], where a linear
factorization scheme is used to recover the time delays first and the
remaining TOA problem is solved independently using [9, 10]. We
assume in the following discussion that the dimensionality of the
affine spaces spanned respectively by {ri} and {sj} are the same
and it is denoted by K, for transmitters and receivers in general 3D
positions, one has K = 3. To understand the intrinsic properties of
the TDOA problem, it is important to understand the minimal num-
ber of measurements needed to solve the problem. These minimal
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configurations have previously been determined in [11]. It is rela-
tively straightforward to derive such configurations that satisfy the
number of degrees of freedom in the measurements, mn is equal to
the number of degrees of freedom in the manifold of unknown pa-
rameters, e.g. 4n+ 3m−6 for TDOA. In 3D space, TDOA problem
has four minimal problems, i.e. 10r/4s, 7r/5s, 6r/6s and 5r/9s,
cf. [11]. Here we use r and s to denote receivers and transmitters,
respectively.

2.1. Time Delays in TDOA

To solve the time delay estimation problem for TDOA measure-
ments, we first introduce the rank constraint on the time delays.
Since (dij)

2 = (fij − oj)
2 = (ri − sj)

T (ri − sj) = rTi ri −
2rTi sj + sTj sj , we can construct the vectors

Ri =
[
1 rTi rTi ri

]T and

Sj =
[
sTj sj − o2

j −2sTj 1
]T .

This gives f2
ij − 2fijoj = RT

i Sj . By collecting Ri and Sj into
matrix R ((K + 2) × m) and S ((K + 2) × n), we have F =
RTS, where F is a matrix in Rm×n containing {f2

ij − 2fijoj}.
This suggests that matrix F is at most of rank K + 2 as we increase
m and n. Using this rank constraint and the structure of R, one
can exploit linear technique (factorization) to solve for the unknown
time delays. This linear technique is proposed in [9] and requires
m = 2(K + 2) and n = (K + 2) measurements, e.g. for K = 3,
one needs m = 10 receivers and n = 5 transmitters.

Here we present a slight modification to the linear scheme in [9].
The idea is to exploit the structure of S and R. To see this, we first
multiplying F from the right by a n×(n−1) matrix Cn of the form
[−1n−1 In−1]T where 1n−1 is a (n − 1) × 1 vector with all ones
and In−1 is an (n − 1) × (n − 1) identity matrix. This operation
subtracts the first column from each column j (j ≥ 2) of S and gives
a matrix with all zeros at the last row. Equivalently, this gives F̄ =
FCn = R̄T S̄, where F̄ is a matrix in Rm×(n−1) with entries f̄ij =

f2
i,j+1 − f2

i1 − 2fi,j+1oj+1 + 2fi1o1, R̄i =
[
1 rTi

]T and S̄j =[
sTj+1sj+1 − o2

j+1 − (sT1 s1 − o2
1) −2(sj+1 − s1)T

]T . Since the
matrix Cn removes rows in both S and R, we call it a compaction
matrix. This effectively gives a constraint that the matrix F̄ is at
most of rank K + 1. As we have exploited the row of ones in S,
we can further utilize the same structure in R. By multiplying F̄
from the left a compaction matrix Cm, correspondingly we have
F̂ = CT

mFCn = R̂T Ŝ. Here R̂ = RCm and Ŝ = SCn and F̂ is
in R(m−1)×(n−1). It can be easily seen that the first row of R̂ and
the last row of Ŝ are all zeros. This suggests that further removing
the last row of R̂ and the first row of Ŝ will preserve F̂ = R̂T Ŝ.
We then have R̂i =

[
(ri+1 − r1)T

]
, Ŝj =

[
−2(sj+1 − s1)T

]
and

entries in F̂ are

f̂ij = gij − g0j − gi0 + g00, (1)

where gij = f2
i+1,j+1 − 2fi+1,j+1oj+1. It is clear that the matrix

F̂ is at most of rank K. The formulation and optimization we will
describe in the following can be generalized to any dimension K.
However, for clarity, we will use the K = 3 case, i.e. all transmitters
and receivers are in a 3D space.

3. PROBLEM FORMULATION

For receivers and transmitters in general 3D space, we know from
Section 2.1 that the modified measurement matrix F̂ is of rank 3.

When we have over-determined case, we can formulate the following
optimization problem for finding the time delays o = {oj}

mino,X ‖X‖∗,

s.t. B0 +

n∑
j=1

ojBj = X. (2)

Here ‖.‖∗ is the nuclear norm of a matrix defined as ‖X‖∗ =∑min(m,n)
i=1 σi, where σi is the ith singular value of a matrix X in

Rm×n. B0, . . . ,Bn are constant matrices in R(m−1)×(n−1) derived
from (1). Specifically, B0 = CT

mFCn, B1 = (b1, . . . ,b1) where
b1 = 2({fi1 − f11}i≥2) and Bj (j ≥ 2) is a matrix with (n − 2)
columns of zeros and the jth column is −2{fij − f1j}i≥2.

Due to the existence of noise in real measurements, we here as-
sume that the noise are i.i.d. zero-mean Gaussian and relax the strict
equality constraints on the measurements as

min
o,X
‖X‖∗ +

µ

2
‖B0 +

n∑
j=1

ojBj −X‖2F , (3)

where µ is some positive constant scalar parameter and ‖.‖F is
the Frobenius norm. When minimizing the nuclear norm of X,
instead of getting a low rank approximation of X, one might mini-
mize the singular values evenly1. To avoid this, we apply the same
strategy in [7] called truncated nuclear norm, where the sum of the
(min{m,n}−K) smallest singular values is minimized. To achieve
this, the minimization problem in (3) is modified as

min
o,X,U,V

‖X‖∗ − Tr(UXVT )

+
µ

2
‖B0 +

n∑
j=1

ojBj −X‖2F . (4)

where U ∈ R3×m, V ∈ R3×n, and UUT = I3 and VVT = I3. It
is shown in [7] that adding the term−Tr(UXVT ) in the minimiza-
tion is equivalent to minimizing the truncated nuclear norm. Now (4)
is a non-convex optimization problem and an optimization scheme
for obtaining local minima is presented in the next section.

4. OPTIMIZATION SCHEME

In the section, we discuss the optimization scheme for the proposed
problems. We use a two-step iterative scheme as in [7]. In Step 1,
we fix o, X and solve for U and V as an outer loop and in Step
2, with U,V fixed, we optimize over o,X iteratively in an inner
loop until X converges. The first step is relatively simple (as shown
in Algorithm 4.1) and we will discuss in details the optimization in
Step 2.

4.1. Optimization using ADMM

To optimize w.r.t X,o with U,V fixed in Step 2, we use the alternat-
ing direction methods of multipliers (ADMM). First, by introducing
a new variable X̂, we rewrite (3) as

mino,X,X̂ ‖X‖∗ − Tr(UX̂VT )

+
µ

2
‖B0 +

n∑
j=1

ojBj − X̂‖2F ,

s.t. X = X̂. (5)
1This is indeed what happens for this problem in our initial implementa-

tion without the term −Tr(UXVT ))
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Algorithm 4.1 TDOA Nuclear Norm
Input: TDOA measurements {fij} of m receivers and n transmit-
ters, threshold ε :
Initialize: Construct {Bj}, j = 0, . . . , n based on (1), set o = 0n,
X1 = X̂1 = Y = F̂
Repeat:

1. Solve for Ul and Vl given Xl .

(a) (Al,Σl,Cl) = svd(Xl)
where Al = (a1, . . . ,am) ∈ Rm×m and Cl =
(c1, . . . , cn) ∈ Rn×n

(b) Ul = (a1,a2,a3)T , Vl = (c1, c2, c3)T

2. Solve {Xl+1,ol+1} = arg mino,X ‖X‖∗−Tr(UlXVT
l )+

µ
2
‖B0 +

∑n
j=1 ojBj −X‖2F

Until:
√
‖Xl+1 −Xl‖2F + ‖ol+1 − ol‖2F < ε

We can see that the augmented Largrange function of (5) is as fol-
lows

L(o,X, X̂,Y) = ‖X‖∗ − Tr(UX̂VT )

+
µ

2
‖B0 +

n∑
j=1

ojBj − X̂‖2F +
λ

2
‖X− X̂‖2F

+ Tr
(

(YT (X− X̂)
)
, (6)

where λ is a positive scalar. With the schemes in ADMM, we alter-
nate the optimization on certain set of variables by fixing the rest of
the variables. Specifically, starting with initial values that o1 = 0n,
X1 = X̂1 = Y = F̂, we have the following three iterative steps for
iteration k + 1:

Computing Xk+1: Given ok, X̂k, and Yk, we minimize
L(ok,X, X̂k,Yk, λ) over X,

Xk+1 = argminX

(
‖X‖∗ − Tr(UX̂kV

T )

+
µ

2
‖B0 +

n∑
j=1

ojkBj − X̂k‖2F +
λ

2
‖X− X̂k‖2F

+ Tr
(
(YT

k (X− X̂k)
))
, (7)

which is equivalent to the following by ignoring the constants:

Xk+1 = arg minX

(
‖X‖∗ +

λ

2
‖X− (X̂k −

1

λ
Yk)‖2F

)
. (8)

This can be solved by Singular Value Thresholding theorem [8].
Computing ok+1, X̂k+1 : Fix Xk+1 and Yk, we can calculate

ok+1 and X̂k+1 as follows:

{ok+1, X̂k+1} = arg mino,X̂

(µ
2
‖B0 +

n∑
j=1

ojBj − X̂‖2F

+
λ

2
‖Xk+1 − (X̂− 1

λ
Yk)‖2F

)
, (9)

which is sum of two quadratic functions and can be solved by finding
{o, X̂} such that ∂L(o,Xk+1, X̂,Yk) = 0.

Computing Yk+1 : Y can be updated as

Yk+1 = Yk + λ(Xk+1 − X̂k+1). (10)
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Fig. 1. Synthetic TDOA measurements with no noise ( m = n =
50). Left: Singular values of the matrix X after optimization; Right :
Speed of convergence (‖o− ogt‖F ) for the ADMM algorithm (µ =
10, λ = 1, ε = 10−12).

We iterate the steps described above in an inner loop until X
converges. Then we feed the updated X to the outer loop as in Step
1 of the above algorithm to update U, V. The outer loop runs until√
‖Xl+1 −Xl‖2F + ‖ol+1 − ol‖2F < ε or a maximum number of

iterations is reached.
Missing Data The previous iterative steps can be easily modified
for TDOA measurements with missing data. In this case, we only
need to replace the term in the above ‖B0 +

∑n
j=1 ojBj − X̂‖2F by

‖B0Ω +
∑n
j=1 ojBjΩ−X̂Ω‖2F where Ω is set of measurements that

have been observed2. This modification will only change slightly the
iterative updating step for ok+1, X̂k+1 and the other steps remain the
same.

5. EXPERIMENTS

In this section, we present experimental results of our method on
synthetic data. It is of interest to see the performance of the method
on synthetic data regarding speed of convergence, accuracy and its
sensitivity to noise. We simulate the positions of the transmitters and
receivers by drawing independently from the standard normal distri-
bution, i.e. rik ∼ N (0, 1) and sjk ∼ N (0, 1) for k = 1, ...,K.
The time delays are also sampled from standard normal distribution,
i.e. oij ∼ N (0, 1). First of all, we study the convergence of the al-
gorithm for noise free cases. For well-constrained over-determined
cases (large m and n), we can see that in Figure 1 (left) that the
ADMM algorithm converges to a rank-3 matrix X and the ground
truth time delays ogt in a few outer iterations. It runs typically on
a MacBook Air with 1.8 GHz Intel Core i5 and 8 GB memory in
around 2s for m = n = 50.

To further understand the effects of increasing measurements,
we run the method on noise-free data for different fixed number of
receivers m and vary the number of transmitters n. For this experi-
ment, we set ε = 10−12 and the maximum number of iterations to
5000. We observe that in Figure 2 (left) for small m i.e. m = 5, the
method does not converges to a reliable initial solution for the time
delays. For largerm’s (m ≥ 6), we can see that the relative errors of
recovered time delays decreases as we have more transmitters, sug-
gesting the benefits of increasing number of measurements. Due to
the fact that the function we are optimizing are non-convex, over-
constrained case with more measurements might reduce the number
of local minima, thus gives better convergence behavior for random

2Here we can assume that there is one receiver that has complement mea-
surements of the n transmitters, and one transmitter that is measured by all
m receivers.
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Fig. 3. Synthetic TDOA measurements with varying percentage of
missing data. Left : noisy-free data for different m and n; Right :
noisy data with Gaussian noise of standard deviation 10−2.

initialization. It is also noted that for a fixed m, when n is larger
than 20, the convergence of the method does not change much.

We also test the method under different levels of noise with in-
creasing number of measurements. We see that in Figure 2 (right) the
error of recovered time delays decreases as the number of measure-
ment increases. Up to certain number of measurements, we see that
the method does not gain better performance e.g.m = n = 30 gives
similar errors as m = n = 100. It is also observed that when the
noise level reaches standard deviation of 10−1, the method perform
poorly no matter how much the number of measurements increases.

While the previous experiments assume that measurements are
complete, it would be of interest to see how the algorithm performs
with missing data. In this experiment, we run the algorithm on noise-
free synthetic TDOA example where we randomly remove certain
percentage of entries in the measurements. We vary the percentage
of the missing entries in the measurement matrix, we can see that
in Figure 3 for relatively large m and n, the algorithm only breaks
down when more than 50% of the measurements are missing (m =
n = 30). For smaller m and n (m = n = 10), the method fails
to provide good estimate when there are more than 20% missing
entries . For noisy measurements with missing data, with noise level
as 10−2, which is typical in practice, form = n = 20, the algorithm
works well until there are more than 30% missing data (Fig.3, right).
For more over-constrained cases m = n = 30, it is more robust to
increasing number of missing entries (up to 50%) and it gives fairly
good initial guess of the time delays even under noise.

6. PRIOR WORKS

Time delay estimation has been studied extensive before. In the most
related work [9] a different constraint is used, which corresponds to
the matrix F in Section 2.1. This makes it possible to solve for the

time delays for at least 10 receivers and at least 5 transmitters. For
special configuration where the receivers lie on a line, [12] presented
minimal solvers for both TOA and TDOA measurements. In [13,14],
the TOA self-calibration is studied for the special case of one re-
ceiver being in the same position as one transmitter. Unlike all these
previous works, we focus on general 3D TDOA problem and utilize
the rank-3 constraint on TDOA measurements, and formulate the
problem as optimization using truncated nuclear norm. The method
can easily handle missing data, which could be difficult for previous
works.

Other previous work that is less related to the present paper are
(i) [11], where solutions to the TOA self-calibration problem of three
transmitters and three receivers in the plane is given. (ii) [15] where
a TDOA setup is used for indoor navigation based on non-linear op-
timization, but the method can get stuck in local minima and is de-
pendent on initialization, (iii) [16] and refined in [17] where a far
field approximation was utilized to initialize the TOA and TDOA
case with good results.

Nuclear norm minimization for minimizing rank has been used
previously in many different applications. Examples of this is in [7]
a matrix completion algorithm using truncated nuclear norm regu-
larization is proposed and validated in application of filling in the
missing pixels of a given image. Also in [18] the low-rank constraint
is explored in the non-rigid structure from motion problem. And the
rank minimization problem is further relaxed to a nuclear norm min-
imization. In particular, it is equivalent to a trace minimization as
the target matrix is positive-definite.

7. CONCLUSIONS

In this paper, we study the problem of determining the unknown
time delays in the TDOA self-calibration problem. We explore a
rank constraint of a matrix that is linear in the time delays and pro-
pose a method based on truncated nuclear norm minimization for
recovering the time delays for TDOA measurements. The method is
general for cases where the receivers and transmitters respectively
span a K-dimensional affine space 3. We show experimentally that
this method gives good estimates for the time delays with noise
and missing data. They can be used as initial solutions for con-
verting TDOA measurements to TOA measurements. As future
work, it is of interest to improve the robustness by using L1-norm
‖B0 +

∑n
j=1 ojkBj − X̂k‖

1
in the cost function. We are also in-

vestigating modeling the problem as finding a matrix of exactly rank
3 instead of minimizing the truncated nuclear norm. Another direc-
tion is to extend this work for unsynchronized TOA problem with
unknown time delays for both receivers and transmitters [19]. Solv-
ing that is of great advantage than [19] when far-field approximation
is required.
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