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ABSTRACT

This paper introduces a new blind calibration algorithm as
well as a new remedy procedure for velocity-sensor triad-
s’ mis-orientations. The word “blind” indicates the pro-
posed method requires no priori knowledge of incident
sources’ direction-of-arrivals (DOAs), and allows the ar-
rays of velocity-sensor triads to be arbitrarily separated at
unknown locations in three-dimensional space. Moreover,
the present work is applicable to the arrays of velocity-sensor
triads with unknown inter-triad gain and phase deviations.
Simulation results verify the efficacy and versatility of this
proposed scheme.

Index Terms— velocity-sensor triad, direction of arrival
estimation, partly calibrated arrays, mis-orientation

1. INTRODUCTION

1.1. The Velocity-Sensor Triad

An velocity-sensor triad (a.k.a. vector-hydrophone) con-
sists of three identical, but orthogonally oriented, acoustic
velocity-sensors – all spatially co-located in a point-like ge-
ometry. The entire velocity-sensor triad thus distinctly mea-
sures all three Cartesian components of the particle-velocity
vector. The velocity-sensor triad thus treats the acoustic
wavefield as a vector-field (i.e., the particle-velocity field),
not merely as a scalar field (i.e., pressure-field), as by the
customary microphone or hydrophone. More precisely, an
acoustic vector-sensor (placed at the origin of the three-
dimensional Cartesian coordinates) would have this 3 × 1
array-manifold [1], [2], in response to a unit-power inciden-
t acoustic wave that has traveled through an homogeneous
isotropic medium:

a
def
=





u(θ, φ)
v(θ, φ)
w(θ)




def
=





sin θ cosφ
sin θ sinφ

cos θ



 , (1)

where 0 ≤ θ ≤ π symbolizes the elevation-angle measured
from the vertical z-axis, 0 ≤ φ < 2π denotes the azimuth-
angle measured from the positive x-axis, u(θ, φ) refers to
the direction-cosine along the x-axis, v(θ, φ) represents the
direction-cosine along the y-axis, and w(θ) refers to the

direction-cosine along the z-axis. The first, second, and third
components in a(θ, φ) correspond to the acoustic velocity-
sensors aligned along the x-axis, the y-axis, and the z-axis,
respectively.

1.2. Literature Review of Relevant Works

This presently proposed algorithm could be related to a class
of array calibration algorithms and direction finding algo-
rithms [3, 4, 5, 6, 7], that handle an array of ideal subar-
rays with non-ideal inter-subarray relationships. Amongst
these series works, only [5] is noticed that allows small inter-
subarray mis-orientations, which is nonetheless limited to one
dimensional rotation on the azimuthal plane, but not the full
trivariate Euler angles for three-dimensional mis-orientation.

A few calibration algorithms are devised for acoustic
vector-sensor’s mis-orientation. [8, 9] can handle vector-
sensor’s mis-orientation, but they all (unlike the present
work) perform aided calibration (as opposed to “blind” cali-
bration), necessitating cooperative emitters to impinge from
prior known directions-of-arrival. It’s worthy noting that at
least three reference signals impinging from different DOAs
are required for [8] to determine the state of misorientation
of each vector hydrophone in the array. [10] introduces a
focusing technique based calibration algorithm, for a single
vector-sensor with time-variant mis-orientation, but assumes
ideal (or prior known) gain and phase for the single vector-
sensor.

1.3. This Works Contributions

This present work’s contributions may be concluded in sever-
al regards:

1. A new blind calibration and remedy scheme, which re-
quires no priori knowledge of incident sources’ DOAs,
is proposed to estimate and rectify the full trivariate Eu-
ler angles for three-dimensional mis-orientation;

2. The new calibration method allows the velocity-sensor
triads with unknown inter-triad gain and phase devia-
tions to be arbitrarily separated at unknown locations
in three-dimensional space.
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3. The new calibration method has no constraints on the
number of emitters.

2. MATHEMATICAL MODELING OF
MIS-ORIENTATION IN AN VELOCITY-SENSOR

TRIAD

The array manifold in (1) is ideal, in presuming perfect gain
responses, as well as presuming perfect conformity to the
nominal locations and orientations. If this hypothetical ideal-
ity is violated by the ℓth velocity-sensor triad, its array mani-
fold would become

a
(ℓ)
k = G(ℓ) R

(

α(ℓ), β(ℓ), γ(ℓ)
)





uk

vk
wk





×ej
2πfk

c {ukx
(ℓ)+vky

(ℓ)+wkz
(ℓ)} (2)

In the above,

1. the mis-orientation is represented by a 3 × 3 matrix,
R

(
α(ℓ), β(ℓ), γ(ℓ)

)
where

R
(

α
(ℓ)

, β
(ℓ)

, γ
(ℓ)

)

=





cos γ(ℓ) sin γ(ℓ) 0
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
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
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cosα(ℓ) 0 sinα(ℓ)

0 1 0

− sinα(ℓ) 0 cosα(ℓ)



 . (3)

Any mis-orientation in three-dimensional space may be
represented by the model in (3), which involves three
sequential rotations: 1) rotation by an angle of α(ℓ) on
the x-z plane, 2) then a second rotation by an angle
of β(ℓ) on the y-z plane, and 3) lastly a third rotation
by an angle of γ(ℓ) on the x-y plane. Without loss of
generality, let the ℓ = 1st velocity-sensor triad serve as
orientation reference. I.e. α(1) = 0, β(1) = 0, γ(1) =
0.

2. the unknown complex-valued gain deviation for the ℓth
velocity-sensor triad is represented by G(ℓ),

3. ej
2πfk

c
(x(ℓ)uk+y(ℓ)vk+z(ℓ)wk) represents the kth source’s

spatial phase factor relating the ℓth velocity-sensor tri-
ad’s arbitrary unknown location

(
x(ℓ), y(ℓ), z(ℓ)

)
rela-

tive to the reference location of (0, 0, 0), with fk denot-
ing the kth narrowband source’s center frequency, and
c symbolizing the propagation speed.

Stacking all L vector sensors’ individual steering vectors,
the entire array is characterized by the 3L× 1 steering vector,

ak =

[(

a
(1)
k

)T

, · · · ,
(

a
(L)
k

)T
]T

.

3. MEASUREMENT DATA MODEL

Consider K number of incident signals, At the ℓth velocity-
sensor triad, the following 3×1 data vector is received at time
t:

z(ℓ)(t) =

K∑

k=1

a
(ℓ)
k sk(t) + n(t). (4)

The kth signal is a pure tone sk(t) =
√
Pke

j(2πfkt+ϕk),
at frequency fk, distinct from the other K − 1 frequencies.
Moreover, Pk denotes the signal power (a priori unknown to
the receiver); ϕk signifies a random phase (uncorrelated to all
other random entities). It is further assumed that (θk, φk) 6=
(θj , φj), ∀k 6= j ∈ {1, · · · ,K}. The additive noise n(t) is
modeled as zero mean, spatio-temporally uncorrelated, with
(a priori unknown) power PN .

The present problem aims to estimate the sources’ arrival
angles, given the M×N collected dataZ = [z(Ts), · · · , z(NTs)],
where M = 3L, N > 2M + 1 1 and Ts symbolizes the a
priori known time sampling period.

4. PROPOSED CALIBRATION AND REMEDY
METHOD FOR VELOCITY-SENSOR TRIADS’

MIS-ORIENTATION

4.1. Estimate Each Source’s Steering Vector

Refer to “Uni-Vector-Hydrophone ESPRIT” algorithm [11],
form theM×N data-matricesZ1 = [z(t1), z(t2), · · · , z(tN )]
and Z2 =[z(t1 +∆T ), z(t2 +∆T ), · · · , z(tN +∆T )]. For-
m the 2M × N data-matrix Z = [ZT

1 ,Z
T
2 ]

T . Eigen-
decompose ZZH , such that Es = [ET

1 ,E
T
2 ]

T is a 2M × K

matrix (the signal subspace eigenvector matrix), whose K

columns are the K principal eigenvectors associated with the
K largest magnitude eigenvalues. Define the K ×K matrix,

Ψ
def
=

(
EH

1 E1

)−1 (
EH

1 E2

)
= T−1ΦT,

where the kth eigenvalue of Ψ equals [Φ]k,k = ej2πfk△T ,
∀k = 1, . . . ,K , and the corresponding right eigenvector con-
stitutes the jth column of T. The K impinging sources’ s-
teering vectors may be estimated, to within complex value
multiplicative scalars, as

[â1, · · · , âK ] =
1

2

{
E1T

−1 +E2T
−1Φ−1

}
.

These K unknown complex value multiplicative scalars arise
from the eigen decomposition of Ψ.

Now we exploit the velocity sensor’s direct measurement

1For a justification of this inequality, please refer to [11].
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of the Cartesian direction cosine:

[

â
(ℓ)
k

]

1
≈ ck G(ℓ) u

(ℓ)
k ej

2πfk
c

(x(ℓ)uk+y(ℓ)vk+z(ℓ)wk), (5)
[

â
(ℓ)
k

]

2
≈ ck G(ℓ) v

(ℓ)
k ej

2πfk
c

(x(ℓ)uk+y(ℓ)vk+z(ℓ)wk), (6)
[

â
(ℓ)
k

]

3
≈ ck G(ℓ) w

(ℓ)
k ej

2πfk
c

(x(ℓ)uk+y(ℓ)vk+z(ℓ)wk).(7)

where the approximations are caused by noises in the data
model, ck is an unknown complex value scalar introduced
from eigen decomposition.

Both azimuth and elevation angles are embedded wholly
within any one velocity-sensor triad’s own data. Thus, the
kth source’s azimuth and elevation direction of arrivals can
be estimated with respect to the ℓth velocity-sensor triad via
(5)-(7) as

θ̂
(ℓ)
k =−

π

2




sgn




ℜ







[

â
(ℓ)
k

]

1

cos
(

φ̂
(ℓ)
k

) [

â
(ℓ)
k

]

3










− 1






+arctan

[

â
(ℓ)
k

]

1

cos
(

φ̂
(ℓ)
k

)[

â
(ℓ)
k

]

3

, (8)

φ̂
(ℓ)
k =







−π
2

(

sgn

(

ℜ

{
[

â
(ℓ)
k

]

2
[

â
(ℓ)
k

]

1

})

− 1

)

+ arctan

[

â
(ℓ)
k

]

2
[

â
(ℓ)
k

]

1

,

if φ ∈ [0, π),

−π
2

(

sgn

(

ℜ

{
[

â
(ℓ)
k

]

2
[

â
(ℓ)
k

]

1

})

− 3

)

+ arctan

[

â
(ℓ)
k

]

2
[

â
(ℓ)
k

]

1

,

if φ ∈ [π, 2π).

(9)

where ℜ{·} returns the real part of {·} and sgn(·) signifies the
sign of the real-value number inside the parentheses (·).

4.2. Calibration of Velocity-Sensor Triad Mis-Orientation

The mis-orientation matrix given in (3) relates the refer-
ence (i.e. the 1st) velocity-sensor triad’s array manifold
to the ℓth velocity-sensor triad’s array manifold as a

(ℓ)
k =

R
(
α(ℓ), β(ℓ), γ(ℓ)

)
a
(1)
k . Let a(1,ℓ)k

def
=

[(

a
(1)
k

)T

,
(

a
(ℓ)
k

)T
]T

.

With azimuth and elevation angles estimated w.r.t. the
1st velocity-sensor triad θ̂

(1)
k , φ̂

(1)
k , and to-be-estimated mis-

orientation parameters for the ℓth velocity-sensor triadα, β, γ,

a
(1,ℓ)
k may be written in the following form:

a
(1,ℓ)
k =

[
I3 03×3

03×3 R (α, β, γ)

]







I2 ⊗








sin
(

θ̂
(1)
k

)

cos
(

φ̂
(1)
k

)

sin
(

θ̂
(1)
k

)

sin
(

φ̂
(1)
k

)

cos
(

θ̂
(1)
k

)














︸ ︷︷ ︸

def
= Υ

(α,β,γ)
k

×







G(1)ej
2πfk

c {ukx
(1)+vky

(1)+wkz
(1)}

...

G(L)ej
2πfk

c {ukx
(L)+vky

(L)+wkz
(L)}







︸ ︷︷ ︸

def
= h

(10)

where I3 signifies 3 × 3 identity matrix, 03×3 denotes 3 × 3
zero matrix and ⊗ symbolizes Kronecker product.

Substitute (10) into the MUSIC equation, which may be

expressed as
(

a
(1,ℓ)
k

)H

EnE
H
n a

(1,ℓ)
k = 0, where the columns

of 6 × (6 − K) matrix En contains 6 − K eigenvectors s-

panning the noise subspace of Z(1,ℓ)Z(1,ℓ)H , where Z(1,ℓ) =
[

I3 03×(M−3)

03×(ℓ−1) I3 03×(M−ℓ−2)

]

Z, which denotes 6 × N

data matrix collected from the 1st velocity-sensor triad and
the ℓth mis-oriented velocity-sensor triad. Then, we have

hH Υ
(α,β,γ)
k

H
EnE

H
n Υ

(α,β,γ)
k

︸ ︷︷ ︸

def
=C

(α,β,γ)
k

h = 0 (11)

If θ 6= {0, π}, since hH 6= 0, (11) can be true only if
C

(α,β,γ)
k drops rank (i.e. det{C(α,β,γ)

k } = 0). [4] shows

that the rank of C(α,β,γ)
k drops (i.e., rank{C(α,β,γ)

k } < L)
if and only if α = α(ℓ), β = β(ℓ), γ = γ(ℓ). Therefore,
(
α(ℓ), β(ℓ), γ(ℓ)

)
can be estimated as

α̂(ℓ), β̂(ℓ), γ̂(ℓ) = arg
α,β,γ

min

{
K∑

k=1

detC
(α,β,γ)
k

}

(12)

where det{·} is the determinant of matrix.

4.3. Remedy for Velocity-Sensor Triad Mis-orientation

The “raw” remedy procedure presented in [8, 10] accommo-
dates the vector-sensor’s orientation errors directly on the re-
ceived data (i.e. the raw data), thus noise would be cross-
correlated among the three component-sensors at each vector-
sensor triad. Hence, this phenomenon may be evitable if the
orientation errors are rectified on the signal subspace.

Having identified the orientation of each velocity-sensor
triad by the foregoing calibration algorithm, the direction-
cosines for the kth source at the ℓth (ℓ > 1) velocity-sensor
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triad need be modified as follow to accommodate the velocity-
sensor triads’ mis-orientation:




û
ℓ,remedy
k

v̂
ℓ,remedy
k

ŵ
ℓ,remedy
k





︸ ︷︷ ︸

def
= p

(ℓ)
k

=
(

R

(

α̂(ℓ), β̂(ℓ), γ̂(ℓ)
))−1





ûℓ
k

v̂ℓk
ŵℓ

k



 (13)

where
[
ûℓ
k, v̂

ℓ
k, ŵ

ℓ
k

]T
=

[

sin θ̂
(ℓ)
k cos φ̂

(ℓ)
k , sin θ̂

(ℓ)
k sin φ̂

(ℓ)
k , cos θ̂

(ℓ)
k

]T

are the direction-cosines which are estimated from the sig-
nal subspace as illustrated in Section 4.1. Moreover, as the
signal-to-noise-ratio in the signal subspace would be higher
than that in the received data, better direction-finding accura-
cy would be expected if the remedy procedure is performed
on the signal subspace.

With
[
ûℓ
k, v̂

ℓ
k, ŵ

ℓ
k

]T
thus being rectified, the kth source’s

direction-cosines pk
def
= [uk, vk, wk]

T may be estimated as

p̂k = arg
pk

min

L∑

ℓ=1

∣
∣
∣pk − p

(ℓ)
k

∣
∣
∣

2

,

The well known solution for this optimization problem
is p̂k = 1

L

∑L

ℓ=1 p
(ℓ)
k . Then, the estimates of sources’

direction-of-arrivals may be found as:

θ̂k = arccos [p̂k]3 (14)

φ̂k = arctan
[p̂k]2
[p̂k]1

(15)

5. NUMERICAL RESULTS

The simulation scenario is detailed below: There exist
K = 2 pure-tone incident signals, at digital frequencies
f ′
1 = 0.47, and f ′

2 = 0.16, which are a priori unknown
to the receiver. Each pure tone has a random phase, uni-
formly distributed between [0, 2π) radians, independently
generated at each Monte Carlo trial, and independent across
the signals. The emitters’ respective azimuth and eleva-
tion directions of arrivals are (θ1, φ1) = (80◦, 50◦), and
(θ2, φ2) = (40◦,−155◦), also a priori unknown to the re-
ceiver. There exist L = 5 non-ideal velocity-sensor triads,
with unknown locations, unknown complex-valued gain de-
viations, and mis-locations. These L = 5 velocity-sensor
triads’ mis-orientions are (α(1), β(1), γ(1)) = (0◦, 0◦, 0◦),
and (α(2), β(2), γ(2)) = (2◦, 5◦, 4◦), and (α(3), β(3), γ(3)) =
(3◦, 1◦, 2◦), and (α(4), β(4), γ(4)) = (5◦, 2◦, 1◦), and
(α(5), β(5), γ(5)) = (6◦, 3◦, 4◦). At each Monte Carlo trial,
the collected data consist of N = 80 snapshots, corrupted by
additive Gaussian noise, white over time, white also across
all velocity sensors. Each icon in Figures 1a-1b consists of
I = 500 statistically independent Monte Carlo trials.
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Fig. 1a. Composite mean square error (Comp-RMSE)
in estimating the mis-orientation angles.

0 10 20 30
10

0

10
1

10
2

10
3

10
4

SNR dB

Co
m

p-
RM

SE
an

d
Co

m
p-

CR
B

(in
de

gr
ee

s)

 

 
Modified method in [10]
Proposed method
CRB

Fig. 1b. Composite mean square error (Comp-
RMSE) in estimating the azimuth-elevation directions-
of-arrival.

For comparison, the method proposed in [10] is modified
to adapt for current situations: 1) time segments in [10] are
replaced by spatial segments (i.e. different velocity-sensor
triads), 2) MUSIC algorithm used in [10] for DOA estimation
is replaced by RARE algorithm in [4] so as to accommodate
unknown gain/phase deviation and unknown subarray loca-
tions.

2

6. CONCLUSION

The proposed calibration algorithm works well in presence
of velocity-sensor triad’s unknown location and unknown
complex-valued gain deviation. The remedy procedure is
performed on the signal subspace which is more robust to
noise contamination.
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