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ABSTRACT
This paper presents a complete characterization and solution to mi-
crophone position self-calibration problem for time-of-arrival (TOA)
measurements. This is the problem of determining the positions
of receivers and transmitters given all receiver-transmitter distances.
Such calibration problems arise in application such as calibration of
radio antenna networks, audio or ultra-sound arrays and WiFi trans-
mitter arrays. We show for what cases such calibration problems are
well-defined and derive efficient and numerically stable algorithms
for the minimal TOA based self-calibration problems. The proposed
algorithms are non-iterative and require no assumptions on the sen-
sor positions. Experiments on synthetic data show that the minimal
solvers are numerically stable and perform well on noisy data. The
solvers are also tested on two real datasets with good results.

Index Terms— Time-of-Arrival, Network Calibration, Micro-
phone Self-Calibration, Minimal Solver

1. INTRODUCTION

The problem of sensor network self-calibration is essential to local-
ization and navigation. In this paper we focus on the time-of-arrival
(TOA) based self-calibration problem, i.e. the problem of determin-
ing the positions of a number of receivers and transmitters given all
receiver-transmitter distances. This problem has certain similarities
to the problem of determining a set of points given all inter-point dis-
tances, which is usually solved using multi-dimensional scaling [1].
Such problems are of general interest in visualization and analysis of
large datasets and for many geometric problems. It also relates to the
study of sensor networks under rigid graph theory [?, 2] where gen-
eral graph structure is of interest. The TOA-based self-calibration
problem studied here corresponds to a special case - bipartite graph
[3]. It is important for network calibration using e.g. microphone
arrays, given recordings of sounds emitted at unknown locations, to
microphones at unknown positions, determine both sound emission
positions and microphone locations.

Such problems could be solved using alternative techniques,
such as manually measuring all distances between microphones or
using computer vision. Examples of such approaches are given
in [4–9]. Here we argue that efficient solution to the TOA-based
self-calibration problem opens up new technological possibilities
e.g. calibration of a sensor network on the fly, determining of re-
flections of receivers and transmitters while moving in an unknown
terrain etc. The solution of the problem is also of great theoretical
interest and the solution techniques are interesting per se.

The research leading to these results has received funding from the
strategic research projects ELLIIT and eSSENCE, and Swedish Founda-
tion for Strategic Research projects ENGROSS and VINST(grant no. RIT08-
0043).

Iterative methods exist for TOA or time-difference-of-arrival
(TDOA) based self-calibration [10, 11]. However, such methods
can get stuck in local minima which are dependent on initialization.
Non-iterative methods for initializing network self-calibration have
received less attention. For general graph structure, one can relax the
TOA-based calibration problem as a semi-definite program [12]. For
bipartite graph, initialization of TOA-based bipartite networks stud-
ied in [13], where solutions to the minimal case of 3 transmitters and
3 receivers in the plane is given. Initialization of time-difference-
of-arrival (TDOA) networks is studied in [14] where a solution to
non-minimal case of 10 receivers and 4 transmitters in 3D for TOA
problem was also derived. In [15, 16] a solution is given to the TOA
based self-calibration problem, if one may additionally assume that
one of the receivers coincide with the position of one of the trans-
mitters. In [17] and refined in [18] a far field approximation was
utilized to initialize both TOA and TDOA problems. In [19, 20], al-
gorithms for far-field unsynchronized receivers were also proposed.
All these previous works attempt to solve the problem with either
minimal or close to minimal data. Studying these minimal cases is
both of theoretical importance and essential to develop fast stable
algorithms suitable in RANSAC [21] and other solution schemes.

In this paper, we completely characterize the TOA based self-
calibration problem in three dimensions. It is shown that such prob-
lems are well-defined for m receivers and n transmitters if and only
if m ≥ 4, n ≥ 4, m + n ≥ 10. We present efficient, numeri-
cally stable and non-iterative algorithms for such problems. In par-
ticular, we study the minimal problem of (m = 6, n = 4) (or
(m = 4, n = 6) which is identical because of symmetry). We show
that this problem has in general 38 solutions and present an algo-
rithm for determining these 38 solutions given an arbitrary 4 × 6
matrix of distance measurements. Furthermore we study the the
problem of (m = 5, n = 5). We show that each 5 × 5 matrix must
fulfill one constraint. But as long as this one constraint is fulfilled
the problem is minimal and has 42 solutions. Also for this problem
we provide a fast and numerically efficient algorithm. To the best
our knowledge, our algorithms are the first to give practical numer-
ical solution for minimal TOA calibration problems in 3D. We also
extend the solution scheme to overdetermined cases and sketch how
the technique could be extended to other dimensions.

2. THE TOA-BASED CALIBRATION PROBLEM
Let ri , i = 1, . . . ,m and sj , j = 1, . . . , n be the spatial coor-
dinates of m receivers (e.g. microphones) and n transmitters (e.g.
sound events), respectively. For measured time of arrival tij from
transmitter ri and receiver sj , we have vtij = ||ri−sj ||2 where v is
the speed of measured signals. We assume that v is known and con-
stant, and that we at each receiver can distinguish which transmitter
j each event is originating from. This can be done e.g. if the signals
are temporally separated or by using different frequencies. We will
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in the sequel work with the distance measurements dij = vtij . The
TOA calibration problem can then be defined as follows.

Problem 1 (Time-of-Arrival Self-Calibration) Given absolute dis-
tance measurements dij determine receiver positions ri , i =
1, . . . ,m and transmitter positions sj , j = 1, . . . , n such that
dij = ||ri − sj ||2.

Note that for such problems, one can only reconstruct locations
of receivers and transmitters up to euclidean transformation and mir-
roring, henceforth referred to as the gauge freedom. In the following
discussion, we assume that the dimensionality of the affine space
spanned by ri and sj is the same and it is denoted as K, typical val-
ues in practice is K = 3 for transmitters and receivers in general 3D
positions. The minimal cases for different dimensions have previ-
ously been determined in [3, 13]. Here we define a minimal case to
a problem as the case that consists of the minimal set of constraints
or equations such that the problem generally has finite number of
solutions. It is relatively straightforward to calculate the number
of degrees of freedom in the measurements, mn and the number
of degrees of freedom in the manifold of unknown parameters, e.g.
3n+3m−6 for TOA in 3D. To be more precise one has to study the
equations using algebraic geometry, to make certain that there are no
anomalies in the set of equations.

2.1. Analysis of the TOA-based Calibration Problem

In this section, we analyze the minimal cases for TOA-based self-
calibration problem. We start by deriving a set of new equations.

Since the distance measurements are assumed to be real and pos-
itive one does not lose any information by squaring them, i.e.

d2ij = (ri − sj)
T (ri − sj) = rTi ri + sTj sj − 2rTi sj .

Notice that these are now polynomial equations in the unknowns.
The problem is significantly easier to analyze and solve by forming
new equations according to the following linear combinations of d2ij :

d211 d212 − d211 . . . d21n − d211
d221 − d211

. . . D̃
d2m2 − d211

 , (1)

where D̃ is a (m − 1)(n − 1) matrix with entries as d̃ij = d2i,j −
d2i1 − d21j + d211, with i = 2, . . .m and j = 2, . . . , n.

These new mn equations are equivalent to the mn equations
formed by d2ij . The new ones are in fact an invertible linear combi-
nations of the old ones.

These equations are of four types:

(A) 1 equation d211 = (r1 − s1)
T (r1 − s1).

(B) n−1 equations of type d21j−d211 = sTj sj−sT1 s1−2rT1 (sj−
s1), for j = 2, . . . n.

(C) m− 1 equations of type d2i1 − d211 = rTi ri − rT1 r1 − 2(ri −
r1)

T s1, for i = 2, . . .m.

(D) (m− 1)(n− 1) equations of type d2ij − d2i1 − d21j + d211 =

−2(ri − r1)
T (sj − s1), for i = 2, . . .m, j = 2, . . . n.

Without loss of generality we may assume that m ≥ n. It turns
out that the characterization of the problem depends on the affine
span of the transmitters and the receivers. For simplicity we will in
the following concentrate on 3D problems and will assume that the
affine span of both the transmitters and of the receivers are of dimen-
sion 3. Notice, however, that much of the argumentation and theory

is straightforward to generalize to other dimensions. A brief sketch
on what can be said in other dimensions is given in Section 2.4.

The solution strategy is to use the equations of type D first and
use factorization techniques to solve for r’s and s’s up to a transla-
tion vector b (3 degrees of freedom) and an affine deformation L (6
degrees of freedom up to an unknown rotation). By a clever choice
of parametrization of the problem it can be shown that the equations
of Type C are linear in the unknowns and the equations of Types A
and B can be used to form polynomial equations. We will then show
that such problems are well defined and can be solved if m ≥ 4,
n ≥ 4 and m + n ≥ 10. The interesting minimal cases are thus
m = 6, n = 4 (and m = 4 , n = 6) as well as m = 5 , n = 5. It
was shown in [3] that these corresponding to rigid cases for bipartite
graphs in 3D.

The factorization step can be understood as follows. Let Ri =[
(ri − r1)

]
and Sj =

[
−2(sj − s1)

]
. The equations of type D

can be written as D̃ = RTS with Ri as columns of R and Sj as
columns of S . The ranks of R and S depends on the dimensionality
of the affine span of the receivers and the transmitters respectively.
As we assume that both of these are 3, then the matrix D̃ also has
rank 3. This also implies that in order to solve the problem, it is re-
quired that m ≥ 4 and n ≥ 4 . By factorizing D̃ which is of rank 3
using e.g. singular value decomposition, we can compute the vectors
to all receivers and transmitters from unknown initial/reference po-
sitions (r1 and s1) up to an unknown full-rank 3× 3 transformation
L such that D̃ = R̃TL−1LS̃ = RTS.

To solve for the unknown transformation and reference posi-
tions, we now utilize the nonlinear constraints in equations of Type
A, B and C. First we can fix the translational part of the gauge free-
dom by choosing the location r1 at the origin. Given that R =
L−T R̃ and S = LS̃, we can parameterize s1 as Lb where b is a
3× 1 vector. This gives

r1 = 0, s1 = Lb

ri = L−T R̃i, i = 2 . . .m

sj = L(S̃∗
j + b), j = 2 . . . n,

(2)

where S̃∗
j = S̃j/(−2). Using this parametrization the equations of

type (A), (B) and (C) become

d211 = (r1 − s1)
T (r1 − s1) = sT1 s1

= bTLTLb, (3)
d21j − d211 = sTj sj − sT1 s1

= S̃∗T
j LTLS̃∗

j + 2bTLTLS̃∗
j , (4)

d2i1 − d211 = rTi ri − 2rTi s1

= R̃T
i (L

TL)−1R̃i − 2bT R̃i. (5)

Observe that all the constraints involve only LTL (and its in-
verse) and b. By representing (LTL)−1 with a symmetric matrix H
parameterized with 6 unknowns, the constraints in (3), (4) and (5)
can then be simplified as

d211 = bTH−1b, (6)
d21j − d211 = S̃∗T

j H−1S̃∗
j + 2bTH−1S̃∗

j , (7)

d2i1 − d211 = R̃T
i HR̃i − 2bT R̃i. (8)

With this parameterization, there are in total 9 unknowns (6
and 3 unknowns for H and b, respectively). By utilizing H−1 =
adj(H)/ det(H), where adj(H) is the adjoint of H, we can multi-
ply equations in (6) and (7) by det(H) to rewrite them as polynomi-
als equations. In this case, we have (n +m − 1) equations, among
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which the (m− 1) equations in (8) are linear, the (n− 1) equations
in (7) are polynomial equations of degree 3 and Equation (6) is of
degree 4. Thus we need n + m − 1 ≥ 9 or n + m ≥ 10 in order
to solve for the 9 unknowns. Since both m ≥ 4 and n ≥ 4 there are
two minimal cases 6r/4s (4r/6s) and 5r/5s.

2.2. Solving the Polynomial System

For the minimal case of 6 receivers and 4 transmitters, there are 5
linear equations of type C. By linear elimination we can express H
and b in terms of 9 − 5 = 4 unknowns x = (x1, x2, x3, x4). We
now obtain four equations

det(H)d211 = bT adj(H)b (9)

det(H)(d212 − d211) = S̃∗T
2 adj(H)S̃∗

2 + 2bT adj(H)S̃∗
2 (10)

det(H)(d213 − d211) = S̃∗T
3 adj(H)S̃∗

3 + 2bT adj(H)S̃∗
3 (11)

det(H)(d214 − d211) = S̃∗T
4 adj(H)S̃∗

4 + 2bT adj(H)S̃∗
4 (12)

in the four unknowns. Here both H and b depend on x. Using
tools from algebraic geometry it can be shown that the solution set
to equations (9-12) in general consists of a set of dimension 1 (a
curve) of ’false’ solutions that fulfill det(H) = 0 and 38 points.
This is done by running the system of equations in Macaulay2 [22]
over the field of Zp, where p is a large prime number and with coef-
ficients initialized randomly. To remove the one-dimensional curve
of false solutions we employ a saturation technique as follows. We
rewrite the equations using an additional unknown z and an addi-
tional equation det(H) = z, i.e.

zd211 = bT adj(H)b (13)

z(d212 − d211) = S̃∗T
2 adj(H)S̃∗

2 + 2bT adj(H)S̃∗
2 (14)

z(d213 − d211) = S̃∗T
3 adj(H)S̃∗

3 + 2bT adj(H)S̃∗
3 (15)

z(d214 − d211) = S̃∗T
4 adj(H)S̃∗

4 + 2bT adj(H)S̃∗
4 (16)

det(H) = z (17)

We then multiply all equations with monomials in x up to degree 9
and keep the highest degree of z as 1. By doing this one can con-
struct 966 equations involving 715 monomials which do not contain
z and 210 monomials that do contain z. These equations can be
represented by a sparse coefficient matrix M = [M0 Mz] of size
966×925, where the coefficients corresponding to monomials with-
out z are in M0 and those corresponding to monomials with z are
in Mz . After multiplication with QT , where QR = M0 is the
QR-factorization of M0, we obtain

QTM = [R QTMz].

Here the last 336 rows of R is zero and thus the last 336 equations
can all be written zfk(x) = 0. After division with z, we obtain 336
equations of degree 6 in x. It can be shown that this solution set to
these equations consist of 38 points.

We then use these equations for solving for the 38 solutions us-
ing a technique described in [23]. This involves generating corre-
sponding coefficient matrix, row manipulation in order to generate
a 38 × 38 matrix, whose eigenvalues and eigenvectors contain the
solution to the system of polynomial equations. For each such solu-
tion, we then calculate H and b and then generate the solutions for
ri and sj according to (2), finding L−1 by e.g. cholesky factorization
of H. L is thus only determined up to a matrix R where RTR = I ,
which coincides with the gauge freedom of rotating and/or mirroring

our solution. The 4r/6s case can be solved in the same way by first
transposing the measurement matrix.

The case of 5 receivers and 5 transmitters is interesting. It is
an overdetermined case in the sense that there are 25 measurements
and 24 degrees of freedom in the solutions set. There is thus one
constraint that has to be satisfied, i.e. the constraint that the 4 ×
4 matrix D̃ has determinant zero. However for all such data, the
problem of determining H and b is minimal. There are m + n −
1 = 9 equations (1 of Type A, 4 of Type B and 4 of Type C) and
9 unknowns. We follow a similar solution scheme as for the (6r/4s)
case. By linear elimination using the 4 linear constraints of type C,
we can express H and b in terms of 9 − 4 = 5 unknowns x =
(x1, x2, x3, x4, x5). The remaining five constraints (1 of Type A,
and 4 of Type B) give a polynomial system with 42 solutions after a
saturation procedure similar to the previous case. Again we use the
scheme in [23] to produce a numerically stable and efficient solution.

2.3. Overdetermined cases

For overdetermined cases (m ≥ 4, n ≥ 4,m+ n > 10), the solver
can be based on solving a minimal case, extending with trilateration,
followed by non-linear optimization to obtain the maximum likeli-
hood estimate. An alternative is to find the best rank 3 approximation
of D̃, solution of H and b using algebraic methods, and then again
followed by non-linear optimization. An advantage with the former
approach is that it can more easily be modified using RANSAC to
remove potential outliers in the measurement matrix D.

2.4. Higher and lower dimensional cases

The ideas presented here can relatively easy to generalized to other
dimensions. The one-dimensional case is trivial. Only one mea-
surement is needed to solve for the problem. In two dimensions the
same approach can be used to show that one needs m ≥ 3, n ≥
3,m + n ≥ 6, which indicate only one minimal problem 3s/3r.
This was in fact solved with a different approach by Stewenius and
Nister in [13] . The problem has in general 4 solutions. For dimen-
sion 4, the analysis gives m ≥ 5, n ≥ 5,m + n ≥ 15, which gives
minimal cases 5s/10r, 6s/9r, 7s/8r,

3. EXPERIMENTS

We test our proposed algorithms on both synthetic and real data. The
recovered sensor positions are up to unknown rotation and transla-
tion. We first determine the rotation and translation with least square
fitting over the ground truth positions and then compute the errors.
For synthetic data, we simulate the positions of receivers and trans-
mitters as 3D points with independent Gaussian distribution of zero
mean and identity covariance matrix. The 6r/4s solver always pro-
duce 38 solutions although some of these could be complex. Similar-
ily the 5r/5s always produce 42 solutions. There are two steps in the
algorithm where the solution could become non-real. First a solution
to the system of polynomial equation could be non-real and secondly
even if this solution is real the matrix H although real, could be in-
definite in which case the Cholesky factorization becomes non-real.
In Fig.1 (Left) is shown a histogram over 5000 simulations. As can
be seen in the figure, for both solvers, there are usually between 14
and 24 real solutions to the system of polynomial equations, whereas
only a few (most often less than 6) of these produce positive definite
matrices H), so that there is typically less than 6 real and thus valid
solutions. This number is however data dependent. For noise-free
synthetic data, we can see in Fig.1 (Right) that both the 6r/4s solver
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Fig. 1. Minimal solver performance on 5000 noise-free random syn-
thetic TOA problems. Left: Distribution of the number of real and
valid solutions each run produces, showing the relative frequency of
number of real and valid solutions among the 38 (or 42) solutions.
Right: the error distribution (RMSE) of reconstructed positions of
microphone and sound sources.
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Fig. 2. Performance on noisy synthetic data - average errors (RMSE)
of reconstructed positions of receivers and transmitters Left: mini-
mal solvers (4r/6s and 5r/5s) under varying noise levels. Right: 10
receivers and varying number of transmitters under Gaussian noise
with standard deviation 2× 10−3.

and 5r/5s solver are numerically stable. We also tested both solvers
on data under different noise level and we observe that the solvers
gives fairly good solutions under reasonable level of noise (Fig.2,
left, solid lines). Using the solutions from the minimal solvers as
initial solutions, we also apply nonlinear optimization step where
we minimize

∑
ij

(
dij − (||ri − sj ||2)

)2 (Fig.2, dash lines). We
also test the solvers on over-determined cases with fixed noise level,
m = 10 and varying n (Fig.2, right). We can see that as n increases,
both solvers gives better initial solutions for the reconstruction. The
current implementation run at around 200ms and 800ms for 6r/4s
and 5r/5s respectively, on a Macbook Air (1.8 GHz Intel Core i5
and 8 GB memory)1.

For real experiments, we have used a publicly available dataset
[15] for comparison as well as our own TOA measurements. In the
dataset [15], the distances between the 8 microphones and 21 sounds
are estimated based on the time-of-arrival measurements. The first
microphone is assumed to be at the same location as first sound. For
our algorithm, no such assumption is needed. To verify this, we
simply remove the distance measurements corresponding to the first
microphone and first sound, which gives us a 7×20 matrix. For this
reduced set of measurements, the root mean square errors (RMSE) of
our reconstructed positions of microphones and sound sources after
non-linear iterative optimization are 0.0083m and 0.0108m, respec-
tively. This is similar to the accuracy [15] that achieves (0.0091m
for microphones and 0.0111m for sound sources) with the addi-

1The solvers are available for download at http://www2.maths.lth.se/visi-
on/downloads/.
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Fig. 3. Real microphone and speaker calibration setup, Left: the
setup of microphones and speakers in an office, Right: the recon-
structed sensor positions using TOA measurements (red) aligned
with the positions estimated based on computer vision (blue).

tional assumption. For the full set of data (8 microphones and 21
sounds), our solvers also gives similar errors as in [15]. Another set
of real data was obtained using seven T-bone MM-1 microphones
and five Roxcore portable speakers, connected to a Fast Track Ul-
tra 8R sound card in an indoor environment, with speakers and mi-
crophones placed in an approximate 1.5 × 1.5 × 1.5 m3 volume
(Fig.3, Left). TOA measurements were obtained by heuristically
matching sounds from different speakers to sound flanks recorded
from different microphones. For this set of measurement, we also
reconstructed the scene using computer vision based algorithms as
ground truth. The reconstruction (Fig.3, Right) when compared to
the vision-based reconstruction has RMSE 0.0088m and 0.0131m
for microphones and speakers respectively.

4. RELATION TO PRIOR WORK

The most related works to ours are [15, 16], where the same factor-
ization step is described. However, instead of solving the original
problem, they solve a problem with an additional assumption that
one receiver and one transmitter have identical positions. This work
does not need this constraint, and is applicable to a wider set of prob-
lems. Close to our setting are also [13], where the minimal TOA
calibration problem in 2D is solved, using three receivers and trans-
mitters each, [14] which solves as a by-product the TOA calibration
problem in 3D with a non-minimal configuration of 10 receivers and
4 transmitters and [18] which solves the TOA calibration problem
assuming a far field approximation with a minimal configuration of
3 receivers and 6 transmitters. Thus no previous work has solved the
minimal cases for general TOA-based self-calibration in 3D.

5. CONCLUSIONS

In this paper, we completely characterize the TOA base self-
calibration problem in three dimensions. It is shown that such
problems are well-defined for m receivers and n transmitters if and
only if m ≥ 4, m ≥ 4, m + n ≥ 10. We present practical and
non-iterative solution algorithms for such problems. In particular,
we present algorithms for solving the (m = 6, n = 4) case (38
solutions) and the (m = 5, n = 5) (42 solutions). For overdeter-
mined cases we present two alternative approaches. The solution
technique is general and can in principle be applied to higher di-
mensional problems. In the paper we show the applicability of the
techniques to both simulated and real data. In the future it would
be interesting to study how such algorithms could be used to further
analyze problems within radio, Wi-Fi and ultrasound.
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