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ABSTRACT

In order to cope with the increased data volumes generated by mod-

ern radio interferometers such as LOFAR (Low Frequency Array)

or SKA (Square Kilometre Array), fast and efficient calibration al-

gorithms are essential. Traditional radio interferometric calibration

is performed using nonlinear optimization techniques such as the

Levenberg-Marquardt algorithm in Euclidean space. In this paper,

we reformulate radio interferometric calibration as a nonlinear opti-

mization problem on a Riemannian manifold. The reformulated cali-

bration problem is solved using the Riemannian trust-region method.

We show that calibration on a Riemannian manifold has faster con-

vergence with reduced computational cost compared to conventional

calibration in Euclidean space.

Index Terms— Calibration, Interferometry: Radio interferom-

etry

1. INTRODUCTION

Radio interferometric calibration is the estimation of errors intro-

duced by the propagation medium (such as the ionosphere) and by

the receivers (such as the beam shape). In order to produce high fi-

delity and high dynamic range images, calibration is essential. While

contemporary radio interferometric arrays at most have a few tens

of receivers (or stations), there is a trend towards building large ra-

dio interferometers with hundreds of receivers, an example being the

Square Kilometre Array (SKA). This naturally leads to data volumes

that are by far greater than what is produced by contemporary radio

telescopes.

The maximum likelihood estimation of calibration parameters is

in fact a nonlinear optimization problem. Currently, nonlinear opti-

mization algorithms such as the Levenberg-Marquardt (LM) method

[1, 2] are used in radio interferometric calibration [3]. The cost func-

tion that is minimized during calibration is invariant to multiplication

of the parameters by a 2 by 2 unitary matrix. Therefore, the solutions

acquired by calibration will have a unitary matrix ambiguity [4].

In this paper, we present the ’quotient manifold’ geometry [5, 6]

of the calibration parameters, which is a better representation of their

invariance to multiplication by 2 by 2 unitary matrices. We further

develop the geometric structure of calibration parameters, first pre-

sented in [7]. Rather than minimizing the cost function in Euclidean

space, as is currently done, we minimize the cost function on the

developed quotient manifold. We use the Riemannian Trust-Region

(RTR) method [8] for minimizing the cost function.

Optimization on matrix manifolds has developed significantly

during the past decade and a complete overview can be found in

[5]. In particular, when there is an underlying symmetry in the pa-

rameter space (such as the invariance to multiplication by a unitary

matrix), exploiting the geometric structure yields better performing

algorithms [9, 10, 11].

Moreover, algorithms such as the LM operate in real parame-

ter space and the cost of calibration of an interferometric array with

hundreds of elements is significant, mainly due to the increased size

of the Jacobian [12]. In this paper, we treat calibration parameters as

complex numbers and because we employ the RTR method [8], the

computational and memory costs are reduced. The novelty of the

work presented in this paper (relation to prior work) is as follows:

(i) We present the quotient manifold geometry of radio interferomet-

ric calibration, improving on [7]. (ii) We reformulate radio inter-

ferometric calibration as an optimization problem on a Riemannian

manifold, where we derive expressions for the Riemannian gradient

and the Hessian, following [9]. (iii) We apply the RTR method [8]

for calibration instead of the traditional Euclidean space calibration

algorithms.

The rest of the paper is organized as follows: In section 2 we

give an overview of radio interferometric calibration. Next, in sec-

tion 3, we present the geometric structure of calibration parameters.

We present the Riemannian gradient and Hessian operators in sec-

tion 4 for the calibration cost function. Simulation results are pre-

sented in section 5 where we apply the RTR method for calibration

and finally, we draw our conclusions in section 6.

Notation: Matrices and vectors are denoted by bold upper and

lower case letters as J and v, respectively. The transpose and the

Hermitian transpose are given by (.)T and (.)H , respectively. The

matrix Frobenius norm is given by ‖.‖. The set of real and complex

numbers are denoted by R and C, respectively. The identity matrix

is given by I. The matrix trace operator is given by trace(.).

2. RADIO INTERFEROMETRIC CALIBRATION

In this section, we present radio interferometric calibration as an op-

timization problem. Consider a radio interferometric array with N
receivers. The observed data at a baseline formed by two receivers,

p and q is given by [13]

Vpq = JpCpqJ
H
q +Npq (1)

where Vpq (∈ C
2×2) is the observed visibility matrix (or the cross

correlations). The errors that need to be calibrated for station p and q
are given by the Jones matrices Jp,Jq (∈ C

2×2), respectively. The

sky signal (or coherency) is given by Cpq (∈ C
2×2) and is known a

priori. The noise matrixNpq (∈ C
2×2) is assumed to have complex,

zero mean, circular Gaussian elements.

For an array withN receivers, we can form at mostN(N−1)/2
baselines that collect visibilities as in (1). We rewrite (1) as

Vpq = ApJCpqJ
H
A

T
q +Npq (2)
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where J (∈ C
2N×2) is the augmented matrix of Jones matrices of

all stations,

J
△
= [JT

1 ,J
T
2 , . . . ,J

T
N ]T (3)

and Ap (∈ R
2×2N ) (and Aq likewise) is the canonical selection

matrix

Ap
△
= [0, 0, . . . , I, . . . ,0]. (4)

In (4), all elements of Ap are zero except the p-th block which is an

identity matrix.

Calibration is the estimation of J given the visibilities as in (1).

Under a Gaussian noise model, the Maximum Likelihood estimate

is

Ĵ = argmin
J

f(J) (5)

where the nonlinear cost function f(J) is

f(J)
△
=

∑

p,q

‖Vpq −ApJCpqJ
H
A

T
q ‖

2. (6)

The sky signal almost always has very little polarization and

therefore, the coherencies Cpq in (1) are diagonal matrices. There-

fore, for any unitary U (∈ C
2×2), we see that f(J) = f(JU). In

other words, for any solution J, a feasible solution for (5) would

also be JU where U is unitary. Currently, a solution for (5) is ob-

tained by well known nonlinear optimization methods such as the

Levenberg-Marquardt [1, 2] method and an in-depth overview of

current calibration approaches can be found in e.g., [3, 14, 15].

3. GEOMETRIC STRUCTURE OF CALIBRATION

In this section, we present the manifold geometric structure of the

parameters J used in radio interferometric calibration. A manifold

can be described as a set of entities, together with a set of mappings

(or charts) that can locally describe the manifold in Euclidean space.

For a more formal introduction to matrix manifolds, the reader is re-

ferred to [5]. A problem very similar to what we consider in this sec-

tion (involving real symmetric positive semi-definite matrices) can

be found in [9] and we follow the same approach.

Given the solution to (5), i.e. J, we know that JU is also a

feasible solution. We say J and JU are similar, i.e.,

J ∼ JU (7)

when U is any unitary matrix. Therefore, the whole set of feasible

solutions JU where U is any unitary matrix can be represented by

one of its elements, J. We consider M to be the manifold of all

2N × 2 complex matrices (C2N×2). While the whole set of feasible

solutions lie on M, using the quotient manifold M = M/ ∼ we

can represent the whole set by a single point as shown in Fig. 1.

The mapping π (canonical projection) is defined such that any

matrix JU on M is mapped onto a single point, π(J) on M. With

this mapping, we define the equivalence class

π−1(π(J))
△
= {JU : UU

H = U
H
U = I,U ∈ C

2×2} (8)

of solutions represented by a single point on M. In order to make

M a Riemannian manifold, we introduce the (smooth) inner product

gJ(., .) to its tangent space TJM as

gJ(ξJ, ηJ)
△
= trace(ξHJ ηJ + ηH

J ξJ), ξJ, ηJ ∈ TJM. (9)

With (9), we can decompose TJM into two complementary vec-

tor spaces as

TJM = VJM⊕HJM (10)

M

M = M/∼
π(J)

π−1(π(J))

J

π

HJM
VJM

Fig. 1. The quotient manifold geometry of the calibration parame-

ters. The dashed (blue) line (onM) represents the equivalence class

of all solutions that are related to J by a unitary ambiguity. This

equivalence class is represented by a single point on the quotient

manifoldM = M/∼. The vertical space VJM is the vector space

tangential to the equivalence class and the horizontal spaceHJM is

the orthogonal complement.

where ⊕ is the direct sum operator. We define the vertical space to

be the directions tangential to the equivalence class at J, i.e.,

VJM
△
= {JΩ : ΩH = −Ω,Ω ∈ C

2×2} (11)

and we choose the set of directions orthogonal to the equivalence

class at J as the horizontal space HJM,

HJM
△
= {ξJ ∈ C

2N×2 : ξHJ J = J
HξJ}. (12)

The proof of (12) is easy to obtain: Let ηJ = JΩ ∈ VJM then by

making gJ(ξJ, ηJ) = 0, we get (12).
The projection of any direction Z ∈ C

2N×2 onto the horizontal

space at J is given by

ΠHJM(Z)
△
= Z− JΩ (13)

where Ω (∈ C
2×2) is skew-Hermitian and (because Z − JΩ ∈

HJM) satisfies the Sylvester equation

ΩJ
H
J+ J

H
JΩ = J

H
Z− Z

H
J. (14)

A retraction is a mapping from TJM to M. There are many

possible retractions but we choose a simple formula for the retraction

as

RJ(ξJ)
△
= J+ ξJ. (15)

We shall use the geometric structure of M, in particular (13)

and (15), in the following section to reformulate calibration.

4. CALIBRATION USING A RIEMANNIANMANIFOLD

Rather than solving (5) in Euclidean space, we minimize the cost

function f(J) on M. In order to do this, we need to compute the
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Riemannian gradient and the Riemannian Hessian of f(J). The Rie-
mannian gradient grad(f(J)) is the unique operator that satisfies

gJ(ξJ, grad(f(J))) = Df(J)[ξJ], ∀ξJ ∈ TJM (16)

where,

Df(J)[ξJ]
△
= lim

t→0

f(J+ tξJ)− f(J)

t
. (17)

Using (6) and (9), we get

grad(f(J)) (18)

= −
∑

p,q

(
A

T
p (Vpq −ApJCpqJ

H
A

T
q )AqJC

H
pq

+ A
T
q (Vpq −ApJCpqJ

H
A

T
q )

H
ApJCpq

)

and the horizontal lift of grad(f(J)) toHJM is

grad(f(J)) = ΠHJM (grad(f(J))) . (19)

The Riemannian Hessian is defined as

Hessf(J)[ηJ]
△
= ΠHJM

(
lim
t→0

1

t
(gradf(J+ tηJ)− gradf(J))

)

(20)

where

lim
t→0

1

t
(gradf(J+ tηJ)− gradf(J)) = (21)

∑

p,q

(
A

T
p

(
(Vpq −ApJCpqJ

H
A

T
q )AqηJ

−Ap(JCpqη
H
J + ηJCpqJ

H)AT
q AqJ

)
C

H
pq

A
T
q

(
(Vpq −ApJCpqJ

H
A

T
q )

H
ApηJ

−Aq(JCpqη
H
J + ηJCpqJ

H)HA
T
p ApJ

)
Cpq

)
.

Note that for notational purposes we write products such as ApJ in

the above expressions but we do not actually form a matrix product

because Ap-s are merely selection matrices.

With the Riemannian gradient and Hessian at hand, we apply

the Riemannian trust-region method [8] to our problem. The trust-

region method solves the problem

min
ηJ∈HJM

f(J) + gJ(grad(f(J)), ηJ) +
1

2
gJ(Hessf(J)[ηJ], ηJ)

subject to gJ(ηJ, ηJ) ≤ δ2, where δ is the trust-region radius.

The computational cost of the RTR method is significantly less

compared with the LM method mainly due to the following reason.

In the LM method, with N stations, the Jacobian is a matrix of size

8×N(N − 1)/2 by 8N with real entries. The multiplication of the

transpose of the Jacobian with itself has costO
(
(8N)24N(N − 1)

)

and the linear system solved is of size 8N . On the other hand, in the

RTR method, both the gradient and the Hessian are of size 2N × 2
with complex entries. Moreover, no full linear system is solved

(since the truncated conjugate gradient method is used [8, 16]), ex-

cept in solving (14), which is only a linear system of order 4.

5. SIMULATION RESULTS

In this section we compare the performance of the proposed cali-

bration approach against conventional calibration. For conventional

calibration, we consider two optimization algorithms: LM algorithm

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [16]. For

the LM algorithm, we use closed form Jacobian calculation and for

BFGS we use closed form gradient calculation (i.e. not using finite

differences). We used the MATLAB implementation of the RTR

method [17] in our simulations.

We simulate an array of N receivers where N is varied. The

error matrices Jp,Jq in (1) are generated with their elements hav-

ing values drawn from a complex uniform distribution in [0, 1] as
U(0, 1) + jU(0, 1). The sky signal is kept at unity, i.e. Cpq = I.

The noise matrix Npq is simulated to have complex circular Gaus-

sian random variables. The variance of the noise is changed accord-

ing to the signal to ratio (SNR)

SNR
△
=

∑
p,q

‖Vpq‖
2

∑
p,q

‖Npq‖2
. (22)

The initial values for the parameters are set as Jp = I for p ∈
[1, N ]. For the RTR method, the upper bound for the trust region

radius δ is chosen as

δ =
1

N

∑

p,q

‖Vpq‖
2

(23)

and the initial trust region radius is chosen as δ/10.
In Fig. 2, we show the reduction of the cost f(J) for N = 30

and SNR = 100 for the three algorithms. The computing time was

measured using a single Intel Xeon CPU core. It is evident that

the RTR method takes significantly less time to reach the minimum

cost. Furthermore, Fig. 2 shows that both three algorithms reach the

minimum cost (i.e. they converge).

In the next simulation, we vary both N and the SNR. For each
value of N , the SNR is changed to 50, 100, 150, and 200 and the

computation time taken by each algorithm to reach convergence is

measured. Once again, we use a single CPU core for the compu-

tations. The results are given in Fig. 3. In Fig. 3, we present the

average computing time taken for all values of SNR. The superior-
ity of the RTR method is once again highlighted in this figure.

The average residual error for all values of SNR (or the value

of f(J) at convergence) is shown in Fig. 4. It is clear that all three

methods reach the same final cost at convergence.

6. CONCLUSIONS

We have presented the geometric structure in the form of a Rieman-

nian quotient manifold that can be used in radio interferometric cal-

ibration. We have derived the Riemannian gradient and Hessian op-

erators to minimize the cost function used in calibration. By em-

ploying the Riemannian trust-region method, we have proposed a

computationally efficient calibration method. Based on simulation

results, we have shown that the proposed calibration algorithm is

much faster and also efficient in memory usage, compared with ex-

isting calibration algorithms that operate in Euclidean space.
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