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ABSTRACT

This paper focuses on two signal processing aspects of multi-

static active sonar systems, namely enhanced range-Doppler

imaging and improved target parameter estimation. The

main contributions of this paper are: i) a hybrid dense-sparse

method is proposed to generate range-Doppler images with

both low sidelobe levels and high accuracy; ii) a generalized

K-Means clustering (GKC) method for target association is

developed to associate the range measurements from differ-

ent transmitter-receiver pairs; iii) the extended invariance

principle-based weighted least-squares (EXIP-WLS) method

is developed for accurate target position and velocity esti-

mation. The effectiveness of the proposed multistatic active

sonar system is verified using numerical examples.

Index Terms— Multistatic active sonar, generalized K-

Means clustering method, extended invariance principle-

based weighted least-squares method

1. INTRODUCTION

Multistatic active sonar systems involve the transmission and

reception of multiple probing sequences and can achieve sig-

nificantly enhanced performance of target detection and lo-

calization through exploiting spatial diversity [1–3]. In this

paper, we consider two important signal processing aspects

of such systems, namely range-Doppler imaging and target

parameter estimation.

The receiver filter design plays a critical role in the over-

all performance of a multistatic active sonar system since it

directly determines the quality of range-Doppler imaging and

affects the accuracy of the subsequent target parameter esti-

mation [4]. In this paper, we propose a hybrid dense-sparse

range-Doppler imaging method (named IAA-MAP), which

first applies the iterative adaptive approach (IAA) [5] to obtain

accurate and dense range-Doppler images, and then achieve

sparsity by using one step of the sparse learning via iterative

minimization (SLIM) method [6]. We show that IAA-MAP

can improve resolution and reduce sidelobe levels simultane-

ously while maintaining high accuracy.
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Fig. 1. A generic active sonar scenario for the nth transmitter,
themth receiver, and the qth target.

In the presence of multiple targets in the field of view, the

failure in associating the peaks (after the direct blasts are re-

moved) of the range-Doppler images could cause severe per-

formance degradations of target parameter estimation [7]. To

efficiently solve this problem, we develop a generalized K-

Means clustering [8] (GKC) method for peak association to

reduce the intensive computational burden required by the

brute-force association (BFA) method.

Based on the fact that different transmitter-receiver pairs

have different reflection coefficients, we develop an extended

invariance principle-based weighted least-squares (EXIP-

WLS) method for target position and velocity estimation.

More specifically, nonlinear algebraic equations are approx-

imated as linear ones via Taylor expansion and the target

position and velocity estimates are refined in an iterative

manner using weighting [9].

The prior work in [10] focuses on range-Doppler imag-

ing using various adaptive filtering techniques while the work

presented here adopts the IAA-MAP method to provide en-

hanced imaging performance and also develops algorithms

for the subsequent target association and parameter estima-

tion problems when multiple targets are at field of interest.

2. RANGE-DOPPLER IMAGING

Consider a two-dimensional (2D) multistatic active sonar sys-

tem equipped with N stationary transmitters and M station-

ary receivers and Q targets are moving in the region of in-

terest. Denote tn = [xtn, y
t
n]

T , rm = [xrm, y
r
m]T , and θq =

[xθq , y
θ
q ]

T as the Cartesian coordinate vectors of the nth trans-

mitter, the mth receiver, and the qth target, respectively. Fur-
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ther, N pings {sn(t)}
N
n=1 are transmitted by the N transmit-

ters respectively and simultaneously, and every receiver is as-

sumed to have perfect knowledge of {sn(t)}
N
n=1. Figure 1

shows a generic sensing scenario for the nth transmitter, the
mth receiver, and the qth target, in which vq = [xvq , y

v
q ]

T is

the velocity vector of the qth target in the Cartesian coordi-

nate. Additionally, φq,n = cos−1
(

(xθq − xtn)/‖θq − tn‖
)

and ϕq,m = cos−1
(

(xθq − xrm)/‖θq − rm‖
)

are the bearing

angles measured from the east to the line connecting θq and

tn and the line connecting θq and rm, respectively.

In a generic sonar scenario, the reflected echo sn,q,m(t)
and the transmitted ping sn(t) are related through:

sn,q,m(t) = κn,q,m · sn (αn,q,m (t− τn,q,m)) , (1)

where κn,q,m is the complex-valued reflection coefficient,

τn,q,m =
%n,m(θq)

c
(2)

is the propagation time delay determined as the ratio of the

target range %n,m(θq) = ‖θq − tn‖ + ‖θq − rm‖ to the un-
derwater speed c, and

αn,q,m =
c+ xvq cosϕq,m + yvq sinϕq,m

c+ xvq cosφq,n + yvq sinφq,n
(3)

is the Doppler scaling factor.

The direct blast from the nth transmitter to the mth re-

ceiver, say sn,m(t), can be written as sn,m(t) = κn,m ·
sn (t− τn,m) , which does not suffer from Doppler scaling

for stationary transmitter and receiver platforms. By taking

into account the contributions from all of the N transmit-

ters and Q targets, the received signal ym(t) acquired at the
mth receiver of the multistatic active sonar systems can be

represented as:

ym(t) =

N
∑

n=1

Q
∑

q=1

sn,q,m(t) +

N
∑

n=1

sn,m(t) + em(t), (4)

form = 1, . . . ,M , where em(t) represents the additive noise.
The time delay and Doppler regions of interest are sepa-

rately divided into R and L points, and there are RL pixels

in total in a range-Doppler image. Let {τr, αl} be the time

delay-Doppler pair of the potential target and κn,m,r,l be the

target reflection coefficient associated with the {τr, αl} pair

and with respect to the nth transmitter and the mth receiver.

Thus the received signal ym(t) acquired at the mth receiver

can be rewritten as

ym(t) =

N
∑

n=1

R
∑

r=1

L
∑

l=1

sn,m,r,l(t) + em(t), (5)

where sn,m,r,l(t) = κn,m,r,l · sn(αl(t − τr)) is the reflected
echo corresponding to the nth transmitted ping sn(t) and the

{τr, αl} pair. The vector form of (5), ym = Smκm+em, de-

scribes a standard sparse representation problem, i.e., to esti-

mate the sparse vector κm given the measurement vector ym

and the dictionary Sm.

To obtain κm and form the range-Doppler images of size

R×L, we adopt the IAA-MAP method, which firstly applies

the iterative adaptive approach (IAA) to obtain accurate and

dense range-Doppler images and then achieves sparsity by us-

ing one step of SLIM-0 [6]. Due to the accurate and robust

IAA result and a single step of SLIM-0, IAA-MAP is robust,

sparse and accurate. The merits of IAA-MAP are desirable

for achieving improved target parameter estimation.

3. TARGET PARAMETER ESTIMATION

In this section, the GKC method is introduced to associate

these orderless range estimates with the corresponding targets

and the EXIP-WLS method is presented to estimate the target

positions and velocities.

3.1. Peak (Range) Association Using GKC

Given the range-Doppler images, we use the Bayesian infor-

mation criterion (BIC) [11], to estimate the target number Q
and locate the corresponding peaks to determine ranges and

Dopplers. When there are multiple targets in the field of in-

terest, i.e., Q ≥ 2, we need to solve the target association

problem, which aims to determine a proper one-to-one cor-

respondence between the Q targets and the Q peaks of each

range-Doppler image.

To solve this association problem, let {ρn,q,m} denote a
collection of target range estimates obtained from the range-

Doppler images and we develop a generalized K-Means [8]

clustering (GKC) method by minimizing

Q
∑

i=1

Q
∑

q=1

N
∑

n=1

M
∑

m=1

δ(i, q, n,m)|ρn,q,m−‖θi−tn‖−‖θi−rm‖|,

(6)

where δ(i, q, n,m) = 1 if and only if ρn,q,m is classified into

the ith class; otherwise, δ(i, q, n,m) = 0. This cost function
implies that it is actually a combined optimization problem

of the peak association and target position estimation. For

ease of exposition, the outline of the proposed GKC method,

which omits the details of target position estimation, is as fol-

lows:

1. Initialization: Randomly assign Q ranges estimates

(peaks) of each image with labels 1, 2, ..., Q;

2. Update of “Means”:

For i = 1 to Q
From the NM range estimates with current label i, we
determine the ith target position denoted as θ̂i;

Plugging θ̂i into ‖θi− tn‖+ ‖θi− rm‖ yields the new

“means” ‖θ̂i − tn‖+ ‖θ̂i − rm‖ for {n,m}.
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3. Re-assignment of Labels:

For n = 1, . . . , N, m = 1, . . . ,M, and q = 1, . . . , Q
Assign the range estimate ρn,q,m to the ith class (Label
i) if and only if

∣

∣

∣
ρn,q,m −

(

‖θ̂i − tn‖+ ‖θ̂i − rm‖
)∣

∣

∣

= min
p∈(1,2,...,Q)

∣

∣

∣
ρn,q,m −

(

‖θ̂p − tn‖+ ‖θ̂p − rm‖
)∣

∣

∣
.

4. Repeat Steps 2) and 3) until convergence.

The proposed GKC approach is more efficient than the

brute-force association (BFA) method because the latter con-

siders all possible associations while the former initializes

with one random candidate and converge to the correct as-

sociation pattern after a few iterations.

3.2. Target Position and Velocity Estimation Using EXIP-

WLS

Theorem 1 [12]: Assume that a one-to-one function f exists

and satisfies ξ = f(θ) ∈ Dξ, ∀θ ∈ Dθ . If limL→∞ ξ̂ =

limL→∞ f(θ̂), then

ˆ̂
θ = argmin

θ

[

ξ̂ − f(θ)
]T

W
[

ξ̂ − f(θ)
]

(7)

is asymptotically (when the number of data samples L is

large) equivalent to the estimate θ̂, with the weighting matrix

W = E
[

∂2ln(Y)

∂ξ∂ξT

]∣

∣

∣

ξ=ˆξ
, which is obtained from the corre-

sponding block of Fisher Information matrix (FIM) that is

related to the signal parameter vector ξ of the unstructured

model. The related proof can be found in [12].

In this subsection, we firstly apply EXIP to estimate θq

from the NM range estimates ρn,q,m(θq) with Label q.
Define

ξ1 =
[

ρ1,q,1 . . . ρN,q,1 ρ1,q,2 . . . ρN,q,M

]T
(8)

and

f1(θq) =
[

%1,1(θq) . . . %N,1(θq) %1,2(θq) . . . %N,M (θq)
]T
,

(9)

then we can apply (7) to obtain an estimate of θq that is

asymptotically equivalent to the maximum likelihood esti-

mate of the structured model. However, f1(θq) is a nonlinear
function of θq and thus a search over a 2D space is required.

To avoid such a computationally intensive search, we develop

an EXIP-based iterative and weighted least square (EXIP-

WLS) method for target position estimation, in which these

nonlinear equations are approximated only by the linear parts

of their Taylor expansion to refine the target position estimate

in an iterative manner.

Given an initial guess of the target location, denoted

as θ̂q = [x̂q ŷq]
T , and the error ∆θ

q between the true

target position θq and the estimate θ̂q can be given by

∆θ
q = θq − θ̂q. Thus, the true target range %n,m(θq)

can be approximated by the linear part of its Taylor ex-

pansion: %n,m(θq) ≈ %n,m(θ̂q) +
(

∆θ
q

)T

∇%n,m(θ̂q),

where ∇(·) denotes the gradient vector, and ∇%n,m(θ̂q) =
[

cos φ̂q,n + cos ϕ̂q,m, sin φ̂q,n + sin ϕ̂q,m

]T

.

Define

D1 =
[

∇%1,1(θq) . . .∇%N,1(θq)∇%1,2(θq) . . .∇%N,M (θq)
]T

,

(10)

and

a1 = ξ1 − f1(θ̂q), (11)

then (7) can be approximately transformed into the following

problem:

∆̂
θ

q = argmin
∆θ

q

[

a1 −D1∆
θ
q]

TW1

[

a1 −D1∆
θ
q

]

, (12)

where W1 is the block matrix of FIM that is related to the

signal parameter vector ξ1, and its solution is given by ∆̂
θ

q =
(

DT
1 W1D1

)−1

DT
1 W1a1. Once ∆̂

θ

q is available, the target

position estimate is updated as θ̂q + ∆̂
θ

q . To refine the esti-

mate, we repeat the above procedure until convergence (e.g.,

when ‖∆̂
θ

q‖ becomes essentially zero).
We remark that when W1 = I, the EXIP-WLS-based

target position estimation approach degrades into an Un-

weighted Least Square (ULS) one, which treats all rangemea-

surements equally. However, in practice different transmitter-

receiver pairs encounter different reflection coefficients. The

EXIP-based weighting scheme exploits the fact that not all

transmitter-receiver pairs are created equally for a particular

target and thus should improve the accuracy of the target

position estimation.

Next we consider applying EXIP to estimate vq from

the NM Doppler estimates αn,q,m obtained from the range-

Doppler imaging results. Similarly, define

ξ2 =
[

α1,q,1 . . . αN,q,1 α1,q,2 . . . αN,q,M

]T
(13)

as the related parameter vector of the unstructured model, and

f2(vq) =
[

ψ1,1(vq) . . . ψN,1(vq) ψ1,2(vq) . . . ψN,M (vq)
]T

(14)

is a one-to-one function of vq in the unstructured model,

where ψn,m(vq) =
c+xv

q cosϕq,m+yv
q sinϕq,m

c+xv
q cosφq,n+yv

q sinφq,n
. Thus, we can

construct an object function similar to (7):

v̂q = argmin
vq

[

ξ2 − f2(vq)
]T

W2

[

ξ2 − f2(vq)
]

, (15)

whereW2 is the blockmatrix of FIM that is related to the sig-

nal parameter vector ξ2. f2(vq) is the nonlinear function of
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Table 1. The noise power and the norm of the simulated am-

plitude and phase modifications.
With respect to Rx1

|κ1,1,1| |κ1,2,1| |κ2,1,1| |κ2,2,1| η1
0.08 0.2 0.2 0.3 −10 dB

With respect to Rx2
|κ1,1,2| |κ1,2,2| |κ2,1,2| |κ2,2,2| η2
0.24 0.1 0.16 0.3 −10 dB

Table 2. RMSE of Parameter Estimates Using ULS and

EXIP-WLS.
Method Target 1 Target 2

θ̂1(dB) v̂1(dB) θ̂2(dB) v̂2(dB)

ULS -9.8561 -19.7429 -5.7636 -15.6197

EXIP-WLS -13.6826 -22.3587 -8.8532 -18.1237

vq and thus similar Taylor approximation and iterative WLS

can be applied to determine the target velocity vq . Since the

Doppler and range measurements are paired, the velocity and

position estimates are paired naturally.

4. SIMULATION RESULTS

Consider a multistatic active sonar system equipped with

N = 2 transmitters and M = 2 receivers. The coordinate

vectors of the two receivers Rx1 and Rx2 are r1 = [2000, 0]T

and r2 = [0, 2000]T , respectively (in unit of meter). Two

transmitters, Tx1 and Tx2, are located at t1 = [0, 0]T and

t2 = [2000, 2000]T , respectively, and transmit two random

phase (RP) sequences simultaneously. The RP sequences are

unimodular with phases independently and uniformly dis-

tributed over [0, 2π). There are Q = 2 targets moving in the
filed of view. The first target, located at θ1 = [1000, 995]T ,
is moving at a velocity of v1 = [−1.8√

2
, −1.8√

2
]T knots. The

second target is located at θ2 = [1050, 965]T and is moving

at v2 = [0,−2]T knots. The Doppler bins correspond to

Doppler scaling factors ranging from 0.9976 to 1.0024. The
zero-mean white Gaussian noise with a power of η1 or η2 is
added to the measurements acquired at Rx1 or Rx2, respec-

tively. The noise power and the norm of the target reflection

coefficients are listed in Table 1.

The range-Doppler images produced by the matched fil-

ter (MF), IAA, SLIM-1, and IAA-MAP are shown in Figures

2(a)-2(d), respectively (for space reason, only one transmitter-

receiver pair is given; in addition, the direct blast is removed

due to available predictable locations). The intensity of all

range-Doppler images is normalized so that the peak is at 0

dB and is clipped at −40 dB. We can see that unlike the MF

images which is mired with background noise and difficult to

detect the two targets, IAA, SLIM-1, and IAA-MAP all pos-

sess excellent interference suppression capabilities and pro-

duce much sharper images. Specifically, IAA-MAP provides
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Fig. 2. Range-Doppler images produced by a multistatic ac-

tive sonar system using various receiver filters.

more accurate estimates than SLIM-1, while maintaining a

significantly lower sidelobe level than IAA. IAA-MAP pro-

vides the cleanest range-Doppler images among all methods

considered herein.

From the two peaks of each range-Doppler image given

by IAA-MAP, we obtain four pairs of range measurements (in

unit of kilometer), i.e.,{2.7825, 2.8200}, {2.7600, 2.8275},
{2.8275, 2.9025}, and {2.8350, 2.8800}. For this multi-

static active sonar system equipped with 2 transmitters

and 2 receivers, there are 8 possible associations for the

case of 2 targets. BFA needs to consider all possibili-

ties, and obtains the correct association pattern at the cost

of 1.23 seconds on an ordinary workstation (Intel Xeon

E5506 processor 2.13G Hz, 12GB RAM, Windows 7 64-

bit, and MATLAB R2010b). In comparison, the proposed

GKC method only requires 0.56 seconds due to its efficient

search. Finally, two groups of associated range measure-

ments are obtained as: {2.7825, 2.7600, 2.9025, 2.8800} and
{2.8200, 2.8275, 2.8275, 2.8350}. The root mean-squared

error (RMSE) of the estimated target positions and veloc-

ities obtained via the EXIP-WLS and ULS methods from

100 Monte Carlo trials are listed in Table 2, from which we

can see that the EXIP-based weighting scheme significantly

improves the estimation accuracy.

5. CONCLUSIONS

We have considered range-Doppler imaging using IAA-MAP

and target parameter estimation using GKC and EXIP-WLS.

We have provided numerical examples to demonstrate the ef-

fectiveness of using the proposed approaches to achieve en-

hanced multistatic active sonar performance.
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