
ON THE STRUCTURE OF THE MULTI-MODE FILTERS FOR PASSIVE WAVEFRONT
CURVATURE RANGING IN A DISTRIBUTED ARRAY SYSTEM ∗

Hongya Ge1 and Ivars P. Kirsteins2

1 Dept. of ECE, New Jersey Institute of Technology, Newark, NJ 07102, USA.
2 Naval Undersea Warfare Center, Newport, RI 02841, USA.

ABSTRACT

This work presents some new results on the structures of, and
our interpretation on, the multi-rank filters used for passive
wavefront curvature (WFC) ranging. Such a WFC rang-
ing systems uses a large-scale distributed arrays with many
spatially separated modular arrays, operating under environ-
ments subject to a spatial coherence loss. Working on the
modular array level beamformed data, the multi-rank filters
along with the weighting coefficients provide further spatial
filtering capability to rake in spatial coherence existing in the
distorted wavefronts impinging on different modular arrays.
Such multi-rank filters can improve ranging performance
through different combining schemes, beyond what achieved
by the bearing-only based triangulation. For a real-valued
inter-module spatial coherence matrix, the derived multi-
rank filters follow a nicely balanced structure comprised of
in-phase and quadrature (I/Q) modes with varying spatial
directions. The results provide a simple solution for us to
discovering levels of coherence existing in different modes
for multi-mode combining.

Index Terms— Asymptotic Results, Eigen-Modes, Large-
Scale Array of Arrays, Passive Source Localization

1. INTRODUCTION

In a typical passive sensing system [1, 2] deployed for surveil-
lance, a large number of distributed modular arrays or sub-
arrays are used to form a composite array network. In our
application, the aim is to passively detect, localize and track
a distant source of interest using a towed array system com-
prised of multiple array modules. Under such a passive op-
eration condition, the distant source can be viewed as a far-
filed source on each individual morular array level. Hence, we
can use modular level sub-array beamforming to improve data
quality and at the same time to reduce data dimensionality. To
achieve the ranging capability at long range, sub-arrays need
to be distributed spatially so that wavefront curvature can be
sensed. However, in an underwater acoustic environment as
illustrated in Fig.1, the inhomogeneous random media, such
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as turbulence, internal waves and currents, can distort wave-
front arriving on a distributed array system, causing spatial
coherence loss [5, 6, 7, 8].

Fig. 1. An illustration of underwater acoustic channel’s ran-
dom media effect, which causes distortions on the wavefronts
impinging on a distributed array system.

As can be imagined from the above illustration that the
impact of wavefront distortion is connected to a smearing-
like effect of a point source perceived by a distributed array
system. This is also connected to the spatial coherence loss of
the spherical wavefront caused by random phase jitters (phase
discontinuities) existing among array modules [3, 4, 6].

Most of the previous work on the effects of spatial coher-
ence loss was focused primarily on the beamforming and di-
rection of arrival (DoA) estimation applications [7, 8, 11, 12].
While our primary goal of this research is on the passive rang-
ing beyond the traditional triangulation method [2] (a non-
coherence solution). To model and combat such spatial coher-
ence loss, we developed in [9] a two-stage multi-rank maxi-
mum likelihood solution to a passive ranging system using
wavefront curvature (WFC) sensed by an array of three mod-
ular arrays in environments subject to signal coherence loss.

In this paper we examine the structure of the optimum
filter weights when the array becomes large. We show that
these multi-rank modes tend to become Fourier-like vectors
that occur in in-phase and quadrature pairs.
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2. NOTATION AND THE MULTI-RANK PROCESSOR

The key components in the multi-rank processor are a bank
of multi-mode eigen-filters and a combiner. Built from the
knowledge of spatial coherence model, such components
further process the beamformed outputs from small-size
modular arrays for passive ranging. To ease the presenta-
tion on the multi-mode filter, let us briefly summarize the
multi-rank ranging solution in [9] as follows. The source’s
range and bearing information are revealed by the peak of the
compressed likelihood function in the parameter space,[

r̂

θ̂

]
= argmax

r,θ
JML(r, θ), (1)

with

JML(r, θ) =
L∑

i=1

λi ηSNR

1 + λi ηSNR
|vH

i y(t)|
2
. (2)

Here, vi and λi are the eigen-vector and eigen-value pair
of the inter-module spatial coherence matrix Rρ in eq. (6);
ηSNR = σ2

s/σ
2
n is the sample SNR on the data from each

array channel; the L × 1 vector y(t) = y(t; r, θ, f) collects
beamformed data from all L modular arrays, i.e.,

y(t; r, θ, f) =


sH
1 (r, θ, f) · x1(t)

...

sH

L(r, θ, f) · xL(t)

 ,

with the kth sub-arrays’ steering vector,

sk(r, θ, f) =

 exp
{
−j2πf

∥pk,n−ps(r,θ)∥
c

}
↓ n = 1, 2, . . . , Nt


Nt×1

,

working on data xk(t) collected by the kth modular array.
Here, the pk,n denotes the coordinate of the nth hydrophone
in the kth modular array; the ps denotes the source’s coor-
dinate. When applying the above procedure to our sea test
data, the soundness of the first-stage beamforming operation
on modular array level become evident in the bearing-rate re-
sults obtained on modular array level.

3. SPATIAL COHERENCE

The focus of this work is to study the structure of the multi-
rank filters and the combiner contained in the multi-rank
processor outlined in eq. (2). As can be seen from the no-
tation and results shown in the Fig.2 that different levels of
spatial coherence exist in the data collected by a distributed
array system. Shown in Fig.2, are the spatial correlation
functions (SCFs), either synthesized using an analytical
model (lines) or extracted from the cross-spectral density
matrix (CSDM) calculated from the data out of modular level
sub-arrays, at a processing frequency.
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(a) Real parts of the spatial correlation function (SCF).
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(b) Imaginary parts of the spatial correlation function (SCF).

Fig. 2. The SCFs observed by a distributed arrays consists
of three volumetric modular arrays. Results from data-driven
CSDM are shown by dots, and SCF model based syntheses
are shown by lines.

3.1. Intra-module Spatial Coherence

Under the far-field assumption and the presence of random
scatter induced path loss [14, 15], the normalized spatial cor-
relation matrix for the data on a modular array level, follows
a Hermitian Toeplitz structure,

Rmod = Toeplitz(ρ,ρH), (3)

with complex-valued correlation vector ρ taking the form of,

ρ = exp
{
−j

2π

λ
pmod(d) · κ(θs)

}
. (4)

Here the N × 3 matrix pmod(d) =
[
px py pz

]
con-

tains a collection of position vectors of a uniform linear ar-
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ray (ULA) within a modular array, and the vector

κ(θs) =

 sin(θz) · cos(θ)
sin(θz) · sin(θ)

cos(θz)


is simply a 3-D wave vector along the direction of the source
of interest. Note that due to the different spatial location of
each modular array, the source’s far-field bearing (the wave
vector) depends on the apparent bearing seen at each modular
array. As can be seen from Fig.2, the complex-valued spatial
correlation estimated out of data collected on modular array
fit nicely into a far-field analytical model. In our application,
due to the relative small-size of modular array in comparison
to the source distance, intra-module coherence can be main-
tained in many processing bands. This facilitates the coherent
sub-array beamforing operation on modular-array level.

Our special focus in this work is on how to characterize
the special structures, hence, to understand the roles of the
multi-mode filters vi as well as the weighting coefficients λi

in (2), for a large-scale distributed array.

3.2. Inter-module Spatial Coherence

The wiggling wavefronts perceived at spatially separated ar-
ray modules motivates us to introduce an inter-module coher-
ence matrix Rρ. In doing so, the data on the whole array

x(t) =


x1(t)

...

xL(t)

 = σs · Sst(r, θ, f) · sρ(t) + n(t).

(5)
will have the following correlation matrix,

Rx = σ2
s · Sst(r, θ, f)Rρ S

H

st(r, θ, f) + σ2
nI, (6)

with

Sst(r, θ, f)=


s1(r, θ, f) 0 · · · 0

0 s2(r, θ, f) · · · 0
...

...
. . .

...
0 0 · · · sL(r, θ, f)


N×L

being the the whole array’s steering matrix. Note that when
there is no coherence loss among distributed sub-array mod-
ules, Rρ = 1L · 1T

L, hence, the signal term in Rx becomes
a rank-1 term, commonly assumed in a traditional array pro-
cessing (a fully coherent system),

σ2
s · Sst(r, θ, f)Rρ S

H

st(r, θ, f) = σ2
s · s(r, θ, f) sH(r, θ, f).

Here vector NtL×1 vector s(r, θ, f) is simply the concatena-
tion of all L sub-arrays’ steering vectors. The multi-rank pro-
cessor de-generalizes into a traditional rank-1 beamformer.
In general, the rank, the multi-mode filters and the associated
weighting coefficients are determined by the spatial coher-
ence existing in the operation environment. Therefore, the

rank along with the eigen-structure of the inter-module spa-
tial coherence matrix Rρ determines the structure and perfor-
mance of the passive ranging system.

As mentioned earlier, the spatial coherence loss is related
to the distortion on the wavefront perceived by the distributes
array. It is also related to a random phase or delay jitter
or phase discontinuity of wavefronts shown among different
modula arrays, which causes a smearing or dispersion effect
on a point source. Such distortion has been studied and char-
acterized by other researchers in DoA estimation related ap-
plications [8, 12, 11]. Under the assumption that the random
phase jitter has a zero mean and symmetric probability den-
sity function (pdf), the spatial coherence matrix can be jus-
tified to follow a real-valued model. By introducing a zero-
mean stochastic model on the random phase jitter to an array’s
steering vector,

ssteer(rs, ϕs, f ; δϕ) = s(rs, ϕs + δϕ, f),

with (rs, ϕs) being source’s location with respect to a refer-
ence point, we can establish a possible model for such con-
nection. Specifically, when modeling the random phase jit-
ter with a symmetric probability density functions (pdf), us-
ing either a uniform pdf, δϕ ∼ U(0, ϕmax) or a Gaussian
pdf δϕ ∼ N(0, σ2

ϕ), we can come up with an approximate
frequency dependent models for the real-valued inter-module
coherence matrix,

R(unif)
ρ (n,m) = sinc

(
2ϕmax

(m− n)Lt

λ
sin(ϕs)

)
and

R(Gauss)
ρ (n,m) = exp

{
−
(
πσϕsin(ϕs) · (m− n)Lt

λ

)2
}

where Lt is the inter-module spacing of the multi-module ar-
ray; and ϕs is the source’s bearing with respect to the baseline
of the array.

In underwater environment, another commonly adopted
model for the spatial coherence is the exponential model [5, 6,
8]. Based on such model, the inter-module coherence matrix
among all L array modules (Lt-spaced) can be found having
the Toeplitz form of,

Rρ = Toeplitz([1, ρ, ρ4, . . . , ρ(L−1)2 ]),

where the parameter ρ = exp{−2(Lt/Lcoh)
2} is a function

of Lcoh the coherence length of the wavefield.
To understand the eigen-structure of Rρ from the spec-

tral decomposition perspective, we can rewrite any Toeplitz
structure coherence matrix precisely as,

Rρ =

∫ +1/2

−1/2

e(ν)Pρ(ν)e
H(ν)dν.

Here the vector e(ν) =
[
1 ej2πν · · · ej2π(L−1)ν

]T
is

simply the well known discrete-time Fourier transform vec-
tor. Pρ(ν) is the spatial power spectral density (PSD) that
describes the wavefield’s power distribution in beamspace.
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4. STRUCTURE OF THE MULTI-MODE FILTERS
When a large number of distributed sub-arrays are made avail-
able for WFC ranging, the asymptotic results developed in
[13] provide design guidelines on how to choose the inter-
module spacings, the multi-rank filters and the correspond-
ing multi-rank combining coefficients, given the spatial co-
herence model, without resorting to the real-time large-size
matrix eigen-analysis. When L is large enough, the following
asymptotic spectral decomposition holds,

Rρ =
L∑

i=1

λivi v
H

i ≈ 1

L

L∑
i=1

Pρ(νi)e(νi) e
H(νi). (7)

That is, for large L, the eigen-mode vi ≈ 1√
L
e(νi) becomes

a normalized DFT vector and the eigenvalue λi ≈ Pρ(νi)
becomes the spatial PSD, each being evaluated at the DFT
bin νi = (i−1)/L, (i = 1, 2, . . . , L). Note from the previous
results on the inter-module coherence models that Rρ is of
real-valued. This implies that actual vi’s and λi’s should be
real-valued too. Further analysis reveals an interesting result
on the structure of the multi-mode filters in I/Q balanced
pair with increasing oscillating rates. This is accomplished
by realizing the fact that the complex-valued DFT-based
modes e(νi) exhibits a conjugate behavior along the unit
circle (within the digital spatial frequency region), and the
spatial PSD Pρ(ν) is of even-symmetry around the Nyquest
spatial frequency. Hence, terms in eq. (7) can be combined
together in conjugate pairs. Doing so results in the following
real-valued eigen mode results,

Rρ =
Pρ(0)
L 1 · 1T+

⌈L/2−1⌉∑
i=2

2Pρ(νi)

L
·Re {e(νi)eH(νi)} , for odd L,

=
Pρ(0)
L 1 · 1T +

Pρ(1/2)
L 1− · 1T

−+

L/2−1∑
i=2

2Pρ(νi)

L
·Re {e(νi)eH(νi)} , for even L,

(8)
where L × 1 mode vector 1 contains all ones related to sim-
ply a delay-sum beamforming mode to pick up the broad-
side wavefield component; while the mode vector 1− con-
tains +1’s and −1’s in alternating signs, a chain of dipoles to
pick up endfire wavefield component. The balanced I/Q mode
vectors functioning to pick up the wavefield components from
other spatial angles. This can be seen from a further simplifi-
cation,

Re {e(νi)eH(νi)} = c(νi) · cT (νi) + s(νi) · sT (νi),

with the in-phase and quadrature phase (I/Q) vectors c(νi)
and s(νi) defined as,

c(νi) =

 cos(2πνin)
↓

n = 1, 2, . . . , L

 , s(νi) =

 sin(2πνin)
↓
n = 1, 2, . . . , L

 .

Shown in Fig.3 are a few typical multi-mode filters aiming
at different beamspaces, where the first mode points towards
broadside, other modes fan out in I/Q pairs along with the
end-fire mode.
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Fig. 3. A few multi-mode filters including the broadside mode,
end-fire mode as well as the I/Q pairs, used in a multi-rank passive
ranging system with L = 20.

Note that the ordering of the corresponding eigen-values
occurs pair-wisely as follows,

λi =
{
Pρ(0), Pρ(ν1), Pρ(ν1), · · · , Pρ(νL/2), Pρ(νL/2)

}
.

Their values depend on the spatial power spectral distribu-
tion along different beam-spaces, and depend on the actual
inter-module spatial coherence present in the operation envi-
ronment. The important message here is that for a large-scale
array system, such power distribution can be obtained adap-
tively (using the estimated inter-module spatial coherence)
by calculating power contained in the modular array beam-
formed data via a projection due to the fact,

λi = vH(νi)Rρv(νi).

The importance of the results is that given a pre-selected
or an estimated inter-module spatial coherence model and the
system parameters of a large-scale array network, the asymp-
totic eigen-analysis can be pre-calculated either analytically
or numerically, and used for building the multi-rank proces-
sor for passive WFC ranging application.

5. CONCLUDING REMARKS

This work provides new results on the spatial coherence mod-
els and test existing in a distributed array system. The in-
teresting I/Q balanced asymptotic results on the inter-module
spatial coherence provide further understanding on the struc-
tures and roles played by the multi-mode filters in beamspace.
Such filters are used in the multi-rank processor to rake in ex-
isting spatial coherence. The projection perspective of reveal-
ing the coherence levels existing in different beamspace leads
to a simple way of obtaining the weighting coefficients for
coherent or non-coherence combining to be used in the multi-
rank passive WFC ranging system, operating in environments
subject to spatial coherence loss.
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